

pdfme

This is a powerful library to create PDF documents easily.

The way you create a PDF document with pdfme is very similar to how you create
documents with LaTex: you just tell pdfme at a very high level what elements you
want to be in the document, without worrying about wrapping text in a box,
positioning every element inside the page, creating the lines of a table, or the
internals of the PDF Document Format. pdfme will put every element
below the last one, and when a page is full it will add a new page to keep
adding elements to the document, and will keep adding pages until all of the
elements are inside the document. It just works.

If you want the power to place elements wherever you want and mess with the PDF
Document Format internals, pdfme got you covered too. Give the docs a look to
check how you can do this.

Main features

	You can create a document without having to worry about the position of each
element in the document. But you have the possibility to place any element
wherever you want too.

	You can add rich text paragraphs (paragraphs with text in different sizes,
fonts, colors and styles).

	You can add images.

	You can add tables and place whatever you want on their cells, span columns
and rows, and change the fills and borders in the easiest way possible.

	You can add group elements that contain paragraphs, images or tables, and
guarantee that all of the children elements in the group element will be in
the same page.

	You can add content boxes, a multi-column element where you can add
paragraphs, images, tables and even content boxes themselves. The elements
inside this content boxes are added from top to bottom and from left to right.

	You can add url links (to web pages), labels/references, footnotes and
outlines anywhere in the document.

	You can add running sections, content boxes that will be included in every
page you add to the document. Headers and footers are the most common running
sections, but you can add running sections anywhere in the page.

Installation

You can install using pip:

pip install pdfme

About this docs

We recommend starting with the tutorial in Tutorial, but you can find
the description and instructions for each feature inside the docs for each
class representing the feature, so in pdfme.text.PDFText class you’ll
learn how to build a paragraph, in pdfme.table.PDFTable class you’ll
learn how to build a table, in pdfme.content.PDFContent class you’ll
learn how to build a content box, in pdfme.document.PDFDocument class
you’ll learn how to build a PDF from a nested-dict structure (Json) and in
pdfme.pdf.PDF class you’ll learn how to use the main class of this
library, the one that represents the PDF document.

Usage

You can use this library to create PDF documents by using one of the following
strategies:

	The recommended way is to use the function pdfme.document.build_pdf(),
passing a dictionary with the description and styling of the document as its
argument. Tutorial section uses this method to build a PDF document,
and you can get more information about this approach in
pdfme.document.PDFDocument definition.

	Use the pdfme.pdf.PDF class and use its methods to build the PDF
document. For more information about this approach see pdfme.pdf.PDF
class definition.

Shortcomings

	Currently this library only supports the standard 14 PDF fonts.

	Currently this library only supports jpg and png image formats (png
images are converted to jpg images using Pillow, so you have to install it to
be able to embed png images).

You can explore the rest of this library components in the following links:

	Tutorial

	Examples

	Modules
	pdfme.base

	pdfme.color

	pdfme.content

	pdfme.document

	pdfme.encoders

	pdfme.fonts

	pdfme.image

	pdfme.page

	pdfme.parser

	pdfme.pdf

	pdfme.table

	pdfme.text

	pdfme.utils

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

In this tutorial we will create a PDF document using pdfme to showcase some
of its functionalities.

We will use the preferred way to build a document in pdfme, that is using
pdfme.document.build_pdf() function. This function receives as its first
argument a nested dict structure with the contents and styling of the document,
and most of this tutorial will be focused on building this dict.

In every step we will tell you the class or function definition where you
can get more information.

Let’s start importing the library and creating the root dictionary where the
definitions that affect the whole document will be stated: document.

from pdfme import build_pdf

document = {}

Now add the style key to this dictionary, with the styling that all of the
sections will inherit.

document['style'] = {
 'margin_bottom': 15,
 'text_align': 'j'
}

In our example we define the margin_bottom property, that will be the
default space below every element in the document, and text_align will
be the default text alignment for all the paragraphs in the document.
In this dict you can set the default value for the style properties that affect
the paragraphs (text_align, line_height, indent, list_text,
list_style, list_indent, b, i, s, f, u, c,
bg, r), images (image_place), tables (cell_margin,
cell_margin_left, cell_margin_top, cell_margin_right,
cell_margin_bottom, cell_fill, border_width, border_color,
border_style) and content boxes (margin_top, margin_left,
margin_bottom, margin_right) inside the document.
For information about paragraph properties see pdfme.text.PDFText,
about table properties see pdfme.table.PDFTable, and about image and
content properties see pdfme.content.PDFContent.

You can set page related properties in style too, like page_size,
rotate_page, margin, page_numbering_offset and
page_numbering_style (see pdfme.pdf.PDF definition).

You can also define named style instructions or formats (something like CSS
classes) in the document dict like this:

document['formats'] = {
 'url': {'c': 'blue', 'u': 1},
 'title': {'b': 1, 's': 13}
}

Every key in formats dict will be the name of a format that you will be able
to use anywhere in the document. In the example above we define a format for
urls, the typical blue underlined style, and a format for titles with a bigger
font size and bolded text. Given you can use this formats anywhere, the
properties you can add to them are the same you can add to the document’s
style we described before.

One more key you can add to document dict is running_sections. In here
you can define named content boxes that when referenced in a section, will be
added to every page of it. Let’s see how we can define a header and footer for
our document using running sections:

document['running_sections'] = {
 'header': {
 'x': 'left', 'y': 20, 'height': 'top',
 'style': {'text_align': 'r'},
 'content': [{'.b': 'This is a header'}]
 },
 'footer': {
 'x': 'left', 'y': 800, 'height': 'bottom',
 'style': {'text_align': 'c'},
 'content': [{'.': ['Page ', {'var': '$page'}]}]
 }
}

Here we defined running sections header and footer, with their
respective positions and styles. To know more about running sections see
pdfme.document.PDFDocument definition.
We will talk about text formatting later, but one important thing to note here
is the use of $page variable inside footer’s content. This is the way
you can include the number of the page inside a paragraph in pdfme.

Just defining these running sections won’t add them to every page of the
document; you will have to reference them in the section you want to really use
them, or add a per_page dictionary like this:

document['per_page'] = [
 {'pages': '1:1000:2', 'style': {'margin': [60, 100, 60, 60]}},
 {'pages': '0:1000:2', 'style': {'margin': [60, 60, 60, 100]}},
 {'pages': '0:4:2', 'running_sections': {'include': ['header']}},
]

This dictionary will style, include or exclude running sections from the pages
you set in the property pages. This key is a string of comma separated
ranges of pages, and in this particular case we will add header to pages 0
and 2, and will add more left margin in odd pages, and more right margin in even
pages.
To know more about per_page dict see pdfme.document.PDFDocument.
Keep reading to see how we add header and footer per sections.

Finally we are going to talk about sections. These can have their own page
layout, page numbering, running sections and style, and are the places where we
define the contents of the document. It’s important to note that after every
section there’s a page break.

Let’s create sections list to contain the documents sections, and add
our first section section1.

document['sections'] = []
section1 = {}
document['sections'].append(section1)

A section is just a content box, a multi-column element where you can add
paragraphs, images, tables and even content boxes themselves (see
pdfme.content.PDFContent for more informarion about content boxes).
pdfme will put every element from a section in the PDF document from top to
bottom, and when the first page is full it will add a new page to keep
adding elements to the document, and will keep adding pages until all of the
elements are inside the document.

Like a regular content box you can add a style key to a section, where you
can reference a format (from the formats dict we created before), or add a
new style dict, and with this you can overwrite any of the default style
properties of the document.

section1['style'] = {
 'page_numbering_style': 'roman'
}

Here we overwrite only page_numbering_style, a property that sets the style
of the page numbers inside the section (see pdfme.pdf.PDF definition).
Default value is arabic style, and here we change it to roman (at least
for this section).

Now we are going to reference the running sections that we will use in this
section.

section1['running_sections'] = ['footer']

In this first section we will only use the footer. pdfme
will add all of the running_sections referenced in running_sections list, in
the order they are in this list, to every page of this section.

And finally we will define the contents of this section, inside content1
list.

section1['content'] = content1 = []

We will first add a title for this section:

content1.append({
 '.': 'A Title', 'style': 'title', 'label': 'title1',
 'outline': {'level': 1, 'text': 'A different title 1'}
})

We added a paragraph dict, and it’s itself what we call a paragraph part. A
paragraph part can have other nested paragraph parts, as it’s explained in
pdfme.text.PDFText definition. This is like an HTML structure, where
you can define a style in a root element and its style will be passed to all of
its descendants.

The first key in this dictionary we added is what we call a dot key,
and is where we place the contents of a paragraph part, and its descendants.
We won’t extend much on the format for paragraphs, as it’s explained in
pdfme.text.PDFText definition, so let’s talk about the other keys in
this dict. First we have a style key, with the name of a format that we
defined before in the document’s formats dict. This will apply all of the
properties of that format into this paragraph part. We have a label key too,
defining a position in the PDF document called title1.
Thanks to this we will be able to navigate to this position from any place in
the document, just by using a reference to this label (keep reading to see how
we reference this title in the second section).
Finally, we have an outline key with a dictionary defining a PDF outline,
a position in the PDF document, to which we can navigate to from the outline
panel of the pdf reader. More information about outlines in
pdfme.text.PDFText.

Now we will add our first paragraph.

content1.append(
 ['This is a paragraph with a ', {'.b;c:green': 'bold green part'}, ', a ',
 {'.': 'link', 'style': 'url', 'uri': 'https://some.url.com'},
 ', a footnote', {'footnote': 'description of the footnote'},
 ' and a reference to ',
 {'.': 'Title 2.', 'style': 'url', 'ref': 'title2'}]
)

Note that this paragraph is not a dict, like the title we added before. Here we
use a list of paragraph parts, a shortcut when you have a paragraph with
different styles or with labels, references, urls, outlines or footnotes.

We give format to the second paragraph part by using its dot key. This way of
giving format to a paragraph part is something like the inline styles in HTML
elements, and in particular in this example we are making the text inside this
part bold and green.

The rest of this list paragraph parts are examples of how to add a url,
a footnote and a reference (clickable links to go to the location in the
document of the label we reference) to the second title of this document (
located in the second section).

Next we will add an image to the document, located in the relative path
path/to/some_image.jpg.

content1.append({
 'image': 'path/to/some_image.jpg',
 'style': {'margin_left': 100, 'margin_right': 100}
})

In style dict we set margin_left and margin_right to 100
to make our image narrower and center it in the page.

Next we will add a group element, containing an image and a paragraph with the
image description. This guarantees that both the image and its description will
be placed in the same page. To know more about group elements, and how to
control the its height check pdfme.content.PDFContent.

content1.append({
 "style": {"margin_left": 80, "margin_right": 80},
 "group": [
 {"image": 'path/to/some_image.jpg'},
 {".": "Figure 1: Description of figure 1"}
]
})

Next we will add our first table to the document, a table with summary
statistics from a database table.

table_def1 = {
 'widths': [1.5, 1, 1, 1],
 'style': {'border_width': 0, 'margin_left': 70, 'margin_right': 70},
 'fills': [{'pos': '1::2;:', 'color': 0.7}],
 'borders': [{'pos': 'h0,1,-1;:', 'width': 0.5}],
 'table': [
 ['', 'column 1', 'column 2', 'column 3'],
 ['count', '2000', '2000', '2000'],
 ['mean', '28.58', '2643.66', '539.41'],
 ['std', '12.58', '2179.94', '421.49'],
 ['min', '1.00', '2.00', '1.00'],
 ['25%', '18.00', '1462.00', '297.00'],
 ['50%', '29.00', '2127.00', '434.00'],
 ['75%', '37.00', '3151.25', '648.25'],
 ['max', '52.00', '37937.00', '6445.00']
]
}

content1.append(table_def1)

In widths list we defined the width for every column in the table. The
numbers here are not percentages or fractions but proportions. For example,
in our table the first column is 1.5 times larger than the second one, and
the third and fourth one are the same length as the second one.

In style dict we set the border_width of the table to 0, thus hiding
all of this table lines. We also set margin_left and margin_right to 70
to make our table narrower and center it in the page.

In fills we overwrite the default value of cell_fill, for some of the
rows in the table. The format of this fills list is explained in
pdfme.table.PDFTable definition, but in short, we are setting the fill
color of the even rows to a gray color.

In borders we overwrite the default value of border_width (which we set
to 0 in style) for some of the horizontal borders in the table. The format
of this borders list is explained in pdfme.table.PDFTable
definition too, but in short, we are setting the border width of the first,
second and last horizontal borders to 0.5.

And finally we are adding the table contents in the table key. Each list,
in this table list, represents a row of the table, and each element in a row
list represents a cell.

Next we will add our second table to the document, a form table with some
cells combined.

table_def2 = {
 'widths': [1.2, .8, 1, 1],
 'table': [
 [
 {
 'colspan': 4,
 'style': {
 'cell_fill': [0.8, 0.53, 0.3],
 'text_align': 'c'
 },
 '.b;c:1;s:12': 'Fake Form'
 },None, None, None
],
 [
 {'colspan': 2, '.': [{'.b': 'First Name\n'}, 'Fakechael']}, None,
 {'colspan': 2, '.': [{'.b': 'Last Name\n'}, 'Fakinson Faker']}, None
],
 [
 [{'.b': 'Email\n'}, 'fakeuser@fakemail.com'],
 [{'.b': 'Age\n'}, '35'],
 [{'.b': 'City of Residence\n'}, 'Fake City'],
 [{'.b': 'Cell Number\n'}, '33333333333'],
]
]
}

content1.append(table_def2)

In the first row we combined the 4 columns to show the title of the form; in
the second row we combine the first 2 columns for the first name, and the other
2 columns for the last name; and in the last row we use the four cells to the
rest of the information.

Notice that cells that are below or to the right of a merged cell must be equal
to None, and that instead of using strings inside the cells, like we did
in the first table, we used paragraph parts in the cells. And besides paragraphs
you can add a content box, an image or even another table to a cell.

Now we will add a second section.

document['sections'].append({
 'style': {
 'page_numbering_reset': True, 'page_numbering_style': 'arabic'
 },
 'running_sections': ['header', 'footer'],
 'content': [

 {
 '.': 'Title 2', 'style': 'title', 'label': 'title2',
 'outline': {}
 },

 {
 'style': {'list_text': '1. '},
 '.': ['This is a list paragraph with a reference to ',
 {'.': 'Title 1.', 'style': 'url', 'ref': 'title1'}]
 }
]
})

In this section we set the page numbering style back to the default value,
arabic, and we reset the page count to 1 by including
page_numbering_reset in the style dict.

We also added running section header, additional to the running section
footer we used in the first section.

And we added the second title of the document, with its label and outline, and a
list paragraph (a paragraph with text '1. ' on the left of the paragraph)
with a reference to the first title of the document.

Finally, we will generate the PDF document from the dict document we just
built, by using build_pdf function.

with open('document.pdf', 'wb') as f:
 build_pdf(document, f)

Following these steps we will have a PDF document called document.pdf with
all of the contents we added to document dict.

Examples

Example of a PDF document created with pdfme.document.build_pdf() using
almost all of the functionalities of this library.

import random

from pdfme import build_pdf

random.seed(1)
abc = 'abcdefghijklmnñopqrstuvwxyzABCDEFGHIJKLMNÑOPQRSTUVWXYZáéíóúÁÉÍÓÚ'

def gen_word():
 return ''.join(random.choice(abc) for _ in range(random.randint(1, 10)))

def gen_text(n):
 return random.choice(['',' ']) + (' '.join(gen_word() for _ in range(n))) + random.choice(['',' '])

def gen_paragraphs(n):
 return [gen_text(random.randint(50, 200)) for _ in range(n)]

document = {
 "style": {
 "margin_bottom": 15, "text_align": "j",
 "page_size": "letter", "margin": [60, 50]
 },
 "formats": {
 "url": {"c": "blue", "u": 1},
 "title": {"b": 1, "s": 13}
 },
 "running_sections": {
 "header": {
 "x": "left", "y": 20, "height": "top", "style": {"text_align": "r"},
 "content": [{".b": "This is a header"}]
 },
 "footer": {
 "x": "left", "y": 740, "height": "bottom", "style": {"text_align": "c"},
 "content": [{".": ["Page ", {"var": "$page"}]}]
 }
 },
 "sections": [
 {
 "style": {"page_numbering_style": "roman"},
 "running_sections": ["footer"],
 "content": [

 {
 ".": "A Title", "style": "title", "label": "title1",
 "outline": {"level": 1, "text": "A different title 1"}
 },

 ["This is a paragraph with a ", {".b": "bold part"}, ", a ",
 {".": "link", "style": "url", "uri": "https://some.url.com"},
 ", a footnote", {"footnote": "description of the footnote"},
 " and a reference to ",
 {".": "Title 2.", "style": "url", "ref": "title2"}],

 {"image": "path/to/some/image.jpg"},

 *gen_paragraphs(7),

 {
 "widths": [1.5, 2.5, 1, 1.5, 1, 1],
 "style": {"s": 9},
 "table": [
 [
 gen_text(4),
 {
 "colspan": 5,
 "style": {
 "cell_fill": [0.57, 0.8, 0.3],
 "text_align": "c", "cell_margin_top": 13
 },
 ".b;c:1;s:12": gen_text(4)
 },None, None, None, None
],
 [
 {"colspan": 2, ".": [{".b": gen_text(3)}, gen_text(3)]}, None,
 {".": [{".b": gen_text(1) + "\n"}, gen_text(3)]},
 {".": [{".b": gen_text(1) + "\n"}, gen_text(3)]},
 {".": [{".b": gen_text(1) + "\n"}, gen_text(3)]},
 {".": [{".b": gen_text(1) + "\n"}, gen_text(3)]}
],
 [
 {
 "colspan": 6, "cols": {"count": 3, "gap": 20},
 "style": {"s": 8},
 "content": gen_paragraphs(10)
 },
 None, None, None, None, None
]
]
 },

 *gen_paragraphs(10),
]
 },
 {
 "style": {
 "page_numbering_reset": True, "page_numbering_style": "arabic"
 },
 "running_sections": ["header", "footer"],
 "content": [

 {
 ".": "Title 2", "style": "title", "label": "title2",
 "outline": {}
 },

 ["This is a paragraph with a reference to ",
 {".": "Title 1.", "style": "url", "ref": "title1"}],

 {
 "style": {"list_text": "1. "},
 ".": "And this is a list paragraph." + gen_text(40)
 },

 *gen_paragraphs(10)
]
 },
]
}

with open('document.pdf', 'wb') as f:
 build_pdf(document, f)

Modules

	pdfme.base

	pdfme.color

	pdfme.content

	pdfme.document

	pdfme.encoders

	pdfme.fonts

	pdfme.image

	pdfme.page

	pdfme.parser

	pdfme.pdf

	pdfme.table

	pdfme.text

	pdfme.utils

pdfme.base

	
class pdfme.base.PDFBase(version='1.5', trailer=None)

	Bases: object

This class represents a PDF file, and deals with parsing python
objects you add to it (with method add) to PDF indirect objects.
The python types that are parsable to their equivalent PDF types are
dict (parsed to PDF Dictionaries), list, tuple, set
(parsed to PDF Arrays), bytes (no parsing is done with this type),
bool (parsed to PDF Boolean), int (parsed to PDF Integer),
float (parsed to PDF Real), str (parsed to PDF String) and
PDFObject, a python representation of a PDF object.

When you are done adding objects to an instance of this class, you just
have to call its output method to create the PDF file, and we will
take care of creating the head, the objects, the streams, the xref
table, the trailer, etc.

As mentioned before, you can use python type bytes to add anything
to the PDF file, and this can be used to add PDF objects like Names.

For dict objects, the keys must be of type str and you don’t
have to use PDF Names for the keys, because they are automatically
transformed into PDF Names when the PDF file is being created. For
example, to add a page dict, the keys would be Type, Content and
Resources, instead of /Type, /Content and
/Resources, like this:

base = PDFBase()
page_dict = {
 'Type': b'/Page', 'Contents': stream_obj_ref, 'Resources': {}
}
base.add(page_dict)

You can add a stream object by adding a dict like the one described
in function pdfme.parser.parse_stream().

This class behaves like a list, and you can get a PDFObject by
index (you can get the index from a PDFObject.id attribute), update
by index, iterate through the PDF PDFObjects and use len to get the
amount of objects in this list-like class.

	Parameters

	
	version (str, optional) – Version of the PDF file. Defaults to ‘1.5’.

	trailer (dict, optional) – You can create your own trailer dict and
pass it as this argument.

	Raises

	ValueError – If trailer is not dict type

	
add(py_obj)

	Add a new object to the PDF file

	Parameters

	py_obj (dict, list, tuple, set, bytes, bool, int, float, str, PDFObject) – Object
to be added.

	Raises

	TypeError – If py_obj arg is not an allowed type.

	Returns

	A PDFObject representing the object added

	Return type

	PDFObject

	
output(buffer)

	Create the PDF file.

	Parameters

	buffer (file_like) – A file-like object to write the PDF file into.

pdfme.color

	
class pdfme.color.PDFColor(color, stroke=False)

	Bases: object

Class that generates a PDF color string (with function str())
using the rules described in pdfme.color.parse_color().

	Parameters

	
	color (int, float, list, tuple, str, PDFColor) – The color
specification.

	stroke (bool, optional) – Whether this is a color for stroke(True)
or for fill(False). Defaults to False.

	
pdfme.color.parse_color(color)

	Function to parse color into a list representing a PDF color.

The scale of the colors is between 0 and 1, instead of 0 and 256, so all the
numbers in color must be between 0 and 1.

color of type int or float represents a gray color between black (0) and
white (1).

color of type list or tuple is a gray color if its length is 1, a rgb
color if its length is 3, and a rgba color if its length is 4 (not yet
supported).

color of type str can be a hex color of the form “#aabbcc”, the name
of a color in the variable colors in file color.py [https://github.com/aFelipeSP/pdfme/blob/main/pdfme/color.py], or a space
separated list of numbers, that is parsed as an rgb color, like
the one described before in the list color type.

	Parameters

	color (int, float, list, tuple, str) – The color specification.

	Returns

	list representing the PDF color.

	Return type

	list

pdfme.content

	
class pdfme.content.PDFContent(content, fonts, x, y, width, height, pdf=None)

	Bases: object

This class represents a group of elements (paragraphs, images, tables)
to be added to a pdfme.pdf.PDF instance; what is called a “content
box” in this library.

This class receives as the first argument a dict representing the
layout of the elements that are going to be added to the PDF.
This dict must have a content key with a tuple or a list as its
value, containing the elements to be added.

The elements are arranged by using method run from top to bottom, and
from left to right in order, in the rectangle defined by args x, y,
width and height. The elements are added to this rectangle, until
they are all inside of it, or until all of the vertical space is used and
the rest of the elements can not be added. In these two cases method run
finishes, and the property finished will be True if all the elements
were added, and False if the vertical space ran out.
If finished is False, you can set a new rectangle (on a new page for
example) and use method run again (passing the parameters of the new
rectangle) to add the remaining elements that couldn’t be added in
the last rectangle. You can keep doing this until all of the elements are
added and therefore property finished is True.

By using method run the elements are not really added to the PDF object.
After calling run, the properties fills and lines will be
populated with the fills and lines of the tables that fitted inside the
rectangle, and parts will be filled with the paragraphs and images that
fitted inside the rectangle too, and you have to add them by yourself to
the PDF object before using method run again (in case finished is
False), because they will be redefined for the next rectangle after calling
it again. You can check the content method in PDF [https://github.com/aFelipeSP/pdfme/blob/main/pdfme/pdf.py] module to see how
this process is done.

This process of creating new pages to fit all of the elements of a content
box is done automatically when you use pdfme.document.PDFDocument
or :pdfme.document.build_pdf()

A cols key with a dict as a value can be included to arrange the
elements in more than one column. For example, to use 2 columns, and to set
a gap space between the 2 columns of 20 points, a dict like this one can be
used:

{
 'cols': {'count': 2, 'gap': 20},
 'content': ['This is a lot of text ...'],
}

The elements in the content list can be one of the following:

	A paragraph that can be a string, a list, a tuple or a dictionary with a
key starting with a .. To know more about paragraphs check
pdfme.text.PDFText. Additional to the keys that can be included
inside style key of a paragraph dict like the one you pass to
pdfme.text.PDFText, you can include the following too:
text_align, line_height, indent, list_text, list_style
and list_indent. For information about these attributes check
pdfme.text.PDFText. Here is an example of a paragraph dict:

{
 'style': {
 'text_align': 'j',
 'line_height': 1.5,
 'list_text': '1. ',
 },
 '.b': 'This is a bold text.'
}

This paragraph dict yields a justified paragraph with a line height of 1.5
times the original line height and with a 1 on the left of the
paragraph.

	An image that should be a dict with a image key, holding the path of
the image, or the bytes of the image. In case image is of type bytes
two more keys should be added to this dict: image_name and
extension, being the first a unique name for the image and the second
the extension or format of the image (ex. “jpg”). This dict can have a
style dict, to tell this class what should it do when an image don’t
fit a column through the key image_place. This attribute can be
“normal” or “flow”(default) and both of them will take the image to the
next column or rectangle, but the second one will try to accommodate the
elements coming after the image to fill the space left by it.
Here is an example of an image dict:

{
 'style': { 'image_place': 'flow' },
 'image': '/path/to/an/image.jpg'
}

	A table that should be a dict with a table key with the table data,
and optionally any or all of the following keys: widths, borders
and fills. To know more about these keys check their meaning in
pdfme.table.PDFTable.
Here is an example of a table dict:

{
 'table': [['col1', 'col2', 'col3'], ['value1', 'value2', 'value3']],
 'widths': [1,2,3],
 'borders': [{'pos': 'h0,1,3;:', 'width': 2, 'color': 0}]
}

	A content box that can be a dict like the one being explained here, and
can contain other elements inside it recursively. This can be used to
insert a new section with more columns (for example a 2 columns content
box, inside another 2 columns content box).

	A group element that is a list of paragraphs, images or tables that should
be placed all in the same page. This can be used for example to place an
image with a description, with the guarantee that both will be in the same
page. Be careful though, because the group element should fit the
width and max height of the containing box, or else an error will be
raised. This can be “relaxed” by setting min_height property style in
the images inside the group. If an image does not have this property it
will take as much space as possible, and if it does it will be shrinked as
much as possible (without shrinking it beyond min_height) to make the
other elements in the group fit in the available height. If there are more
than one images in the group with min_height style property they will
be shrinked together proportionally. If you want to ensure that some image
will be shrinked until its min_height, use the shrink style
property.
Here is an example of a group element:

{
 "style": {"margin_left": 80, "margin_right": 80},
 "group": [
 {"image": "tests/image_test.jpg", "min_height": 200},
 {".": "Figure 1: Description of figure 1"}
]
}

Each element in the content box can have margins to keep it separated from
the other elements, and these margins can be set inside the style dict
of the content box dict with the following keys: margin_top,
margin_left, margin_bottom and margin_right. Default value for
all of them is 0, except for margin_bottom that have a default value of
5.

All of the children elements in the content box will inherit the
the content box style.

	Parameters

	
	content (dict) – A content dict.

	fonts (PDFFonts) – A PDFFonts object used to build paragraphs.

	x (int, float) – The x position of the left of the rectangle.

	y (int, float) – The y position of the top of the rectangle.

	width (int, float) – The width of the rectangle where the contents will
be arranged.

	height (int, float) – The height of the rectangle where the contents will
be arranged.

	pdf (PDF, optional) – A PDF object used to get string styles inside the
elements.

	Raises

	TypeError – if content is not a dict

	
setup(x=None, y=None, width=None, height=None)

	Function to change any or all of the parameters of the rectangle of
the content.

	Parameters

	
	x (int, float, optional) – The x coordinate of the left of the
rectangle.

	y (int, float, optional) – The y coordinate of the top of the
rectangle.

	width (int, float, optional) – The width of the rectangle where the
contents will be arranged.

	height (int, float, optional) – The height of the rectangle where the
contents will be arranged.

	
run(x=None, y=None, width=None, height=None)

	Function to arrange this object elements in the rectangle defined by
x, y, width and height.

More information about this method in this class definition.

	Parameters

	
	x (int, float, optional) – The x position of the left of the
rectangle.

	y (int, float, optional) – The y position of the top of the
rectangle.

	width (int, float, optional) – The width of the rectangle where the
contents will be arranged.

	height (int, float, optional) – The height of the rectangle where the
contents will be arranged.

	
get_state()

	Method to get the current state of this content box. This can be used
later in method pdfme.content.PDFContent.set_state() to restore
this state in this content box (like a checkpoint in a videogame).

	Returns

	a dict with the state of this content box.

	Return type

	dict

	
set_state(section_element_index=None, section_delayed=None, children_memory=None)

	Method to set the state of this content box.

The 3 arguments of this method define the current state of this content
box, and with this method you can change that state.

	Parameters

	
	section_element_index (int, optional) – the index of the current
element being added.

	section_delayed (list, optional) – a list of delayed elements, that
should be added before continuing with the rest of elements.

	children_memory (list, optional) – if the current element is in turn
a content box, this list says what the indexes of the nested
content boxes inside this content box are.

	
class pdfme.content.PDFContentPart(content, pdf_content, min_x, width, min_y, max_y, parent=None, last=False, inherited_style=None)

	Bases: object

Class that represent a content element.

This class has all the logic to arrange the content elements in the
rectangle defined by min_x (left), min_y (top), width and
max_y (bottom). This class needs a reference to a
pdfme.content.PDFContent that will store the information
of the lines, fills and parts of the elements arranged by
this class, and all of the children PDFContentPart ‘s of this object.
The description of the content argument is the same that the one
from pdfme.content.PDFContent.

	Parameters

	
	content (dict) – A content dict.

	pdf_content (PDFContent) – To store the fills, lines and
parts of the elements of the content.

	min_x (int, float) – The x position of the left of the rectangle.

	width (int, float) – The width of the rectangle where the
contents will be arranged.

	min_y (int, float) – The y position of the top of the rectangle.

	max_y (int, float) – The y position of the bottom of the rectangle.

	parent (PDFContentPart, optional) – If not None, this is the parent
of the current object, and it’s needed because the arranging process
made by this object affects the parent arranging process and
viceversa.

	last (bool, optional) – This tells whether this is the last element
of the list of elements of the parent. Defaults to False.

	inherited_style (dict, optional) – The accumulated styles of all of
the ancestors of the current object.

	Raises

	TypeError – If content is not a dict

	
setup(min_x, width, min_y, max_y)

	Function to update the rectangle of this element.

	Parameters

	
	min_x (int, float) – The x position of the left of the rectangle.

	width (int, float) – The width of the rectangle where the
contents will be arranged.

	min_y (int, float) – The y position of the top of the rectangle.

	max_y (int, float) – The y position of the bottom of the rectangle.

	
get_state()

	Method to get the current state of this content box. This can be used
later in method pdfme.content.PDFContentPart.set_state() to
restore this state in this content box (like a checkpoint in a
videogame).

	Returns

	a dict with the state of this content box.

	Return type

	dict

	
set_state(section_element_index=None, section_delayed=None, children_memory=None)

	Method to set the state of this content box part.

The arguments of this method define the current state of this content
box part, and with this method you can change that state.

	Parameters

	
	section_element_index (int, optional) – the index of the current
element being added.

	section_delayed (list, optional) – a list of delayed elements, that
should be added before continuing with the rest of elements.

	children_memory (list, optional) – if the current element is in turn
a content box, this list says what the indexes of the nested
content boxes inside this content box are.

	
add_delayed()

	Function to add the delayed elements to the rectangle.

This function will try to add the delayed elements to the rectangle
and it will return a string telling what the main loop should do,
depending on what happened with the elements when they were being added
to the rectangle.

	Returns

	any of the strings mentioned in
pdfme.content.PDFContentPart.add_elements().

	
add_elements()

	Function to add the elements in content to the rectangle.

This function will try to add the elements to the rectangle
and it will return a string telling what the main loop should do,
depending on what happened with the elements when they were being added
to the rectangle.

	Returns

	
	'interrupt' means this element or one of its children reached
the end of the rectangle of this element’s root ancestor, or what
is the same, this element’s pdfme.content.PDFContent
instance (the one saved in pdf_content attribute). This
message will propagate to the ancestors until it reach the root
ancestor and make the pdf_content to end running. After that
the user should set a new rectangle, maybe in a new page, and call
the pdfme.content.PDFContent.run() function again to
keep adding the remaining elements that couldn’t be added before.

	'break' means an ancestor is resetting and this element should
stop adding elements.

	'partial_next' means an ancestor has some remaining elements
that need to be added and this element should stop.

	'next' means that this element needs to move to the next
section, to continue adding elements to the rectangle. The next
section could be the next column of this element, or the next
section of the parent.

	'continue' means this element is done adding all of the
elements (there could be delayed elements still).

	
is_element_resetting()

	Function that returns a string depending on whether this element
is resetting or not.

	Returns

	A string telling the main loop what should do next.

	
process_add_ans(ans)

	Function that process the answers from methods
pdfme.content.PDFContentPart.add_delayed() and
pdfme.content.PDFContentPart.add_elements().

	Parameters

	ans (str) – Any of the strings described in
pdfme.content.PDFContentPart.add_elements().

	Returns

	A string telling the main loop what should do next.

	
run()

	Function to run the main loop that will add the content elements to
the rectangle.

	Returns

	A string telling the parent what should it do afterwards.

	
last_child_of_resetting()

	Function that recursively, towards the ancestors, checks if this
element is the last element of the last element of one ancestor that
is resetting.

	Returns

	True if this element is the last element of an ancestor that is
resetting.

	
start_resetting()

	Function that sets the attribute will_reset of this element or
one of its ancestors to True.

	
reset()

	Function that first checks if resetting process is over, and if not
calculates a new value for attribute max_y and resets all of the
elements added to the rectangle so far to repeat the arranging process.

	Returns

	True if resetting process should continue or False if this process
is done.

	
go_to_beginning()

	Function that takes the x and y coordinates of this element to the
min_x and min_y coordinates.

	
next_section(children_memory=None)

	Function that sets the x and y position of this element in the next
section.

The next section could be the next column of this element or the next
section of one of the ancestors. If some ancestor is resetting, or the
end of the rectangle of the root element is reached, a string with a
instruction for the caller will propagate this message towards the
ancestors to act according to it.

	Parameters

	children_memory (list, optional) – This is a list containing the
children’s indexes and delayed elements, that is accumulated
towards the ancestors.

	Returns

	A string containing a message to the main loop, or a dict
containing the new x and y coordinates that the children are
going to have from now on.

	Return type

	str, dict

	
get_min_x()

	Function to get the x coordinate of the rectangle depending on the
current column.

	Returns

	The x coordinate.

	Return type

	int, float

	
update_dimensions(style)

	Function that updates the rectangle dimensions of the child element
that is going to be added to the rectangle of this element.

	Parameters

	style (dict) – The style dict that contains the margin information
needed to calculate the child element rectangle dimensions.

	
add_top_margin(style)

	Function that adds the top margin of the current child element.

	Parameters

	style (dict) – The style dict that contains the margin information
needed to calculate the child element top margin.

	
parse_element(element)

	

	
process(element, last=False)

	Function to add a single child element to the rectangle.

This function will add an element to the rectangle, using the method
corresponding to the type of the object (text, image, table or another
content). Depending on what happens with the element (if it was added or
delayed) this return a string with a message for the main loop, or a
dict with information to tell the caller function what should be done
afterwards.

	Parameters

	
	element (dict, str, list, tuple) – The object representing the
element to be added.

	last (bool) – Wheter or not this is the last child element of the
list of child elements of this element.

	
process_text(element, style, element_style, add_parts=True, add_top_margin=True)

	Function that tries to add a paragraph to the current column
rectangle, and add the remainder to the delayed list

	Parameters

	
	element (dict) – The paragraph to be added

	style (dict) – The style of the paragraph, combined with the style
of this element.

	element_style (dict) – The style of the paragraph.

	Returns

	Containing instructions to the caller.

	Return type

	dict

	
process_image(element, style, add_parts=True, add_top_margin=True)

	Function that tries to add an image to the current column rectangle,
and add it to the delayed list if it can’t add it.

	Parameters

	
	element (dict) – The image to be added

	style (dict) – The style of the image.

	Returns

	Containing instructions to the caller.

	Return type

	dict

	
process_table(element, style, element_style, add_parts=True, add_top_margin=True)

	Function that tries to add a table to the current column rectangle,
and add the remainder to the delayed list.

	Parameters

	
	element (dict) – The table to be added.

	style (dict) – The style of the table, combined with the style
of this element.

	element_style (dict) – The style of the table.

	Returns

	Containing instructions to the caller.

	Return type

	dict

	
process_child(element, style, last, add_top_margin=True)

	Function that tries to add a child content to the current column
rectangle.

	Parameters

	
	element (dict) – The child to be added

	style (dict) – The style of the child, combined with the style
of this element.

	last (bool) – whether or not this is the last child of this element.

	Returns

	Containing instructions to the caller.

	Return type

	str, dict

	
get_element_styles(element, inherited_style)

	

	
process_group_element(element, inherited_style, add_element=False, add_top_margin=True, min_height=None)

	

	
process_group(group_element, style)

	Function that tries to add a group element to the current column
rectangle, and add it to the delayed list if it can’t add it. If after
50 tries it can not add the group element, it will throw an exception.

	Parameters

	
	group_element (dict) – The group element to be added

	style (dict) – The style of the group element, combined with the
style of this content element.

	Returns

	Containing instructions to the caller.

	Return type

	dict

pdfme.document

	
class pdfme.document.PDFDocument(document, context=None)

	Bases: object

Class that helps to build a PDF document from a dict (document
argument) describing the document contents.

This class uses an instance of pdfme.pdf.PDF internally to build
the PDF document, but adds some functionalities to allow the user to
build a PDF document from a JSONish dict, add footnotes and other
functions explained here.

A document is made up of sections, that can have their own page layout,
page numbering, running sections and style.

document dict can have the following keys:

	style: the default style of each section inside the document. A dict
with all of the keys that a content box can have (see
pdfme.content.PDFContent for more information about content
box, and for the default values of the attributes of this dict see
pdfme.pdf.PDF). Additional to the keys of content box style, you
can add the following keys: outlines_level, page_size,
rotate_page, margin, page_numbering_offset and
page_numbering_style. For more information about this page attributes
and their default values see pdfme.pdf.PDF definition.

	formats: a dict with the global styles of the document that can be
used anywhere in the document. For more information about this dict
see pdfme.pdf.PDF definition.

	running_sections: a dict with the running sections that will be used
by each section in the document. Each section can have, in turn, a
running_section list, with the name of the running sections defined in
this argument that should be included in the section. For information
about running sections see pdfme.pdf.PDF.
If width key is equal to 'left', it takes the value of the left
margin, if equal to 'right' it takes the value of the right margin, if
equal to 'full' it takes the value of the whole page width, and if it
is not defined or is None it will take the value of the content width of
the page.
If height key is equal to 'top', it takes the value of the top
margin, if equal to 'bottom' it takes the value of the bottom margin,
if equal to 'full' it takes the value of the whole page height, and if
it is not defined or is None it will take the value the content height of
the page.
If x key is equal to 'left', it takes the value of the left
margin, if equal to 'right' it takes the value of the whole page width
minus the right margin, and if it is not defined or is None it will be 0.
If y key is equal to 'top', it takes the value of the top
margin, if equal to 'bottom' it takes the value of the whole page
height minus the bottom margin, and if it is not defined or is None i
will be 0.

	per_page: a list of dicts, each with a mandatory key pages, a
comma separated string of indexes or ranges (python style), and any of the
following optional keys:

	style: a style dict with page related style properties (page_size,
rotate_page, margin) that will be applied to every page in the pages
ranges.

	running_sections: a dict with optional exclude and include
lists of running sections names to be included and excluded in every
page in the pages ranges.

	sections: an iterable with the sections of the document.

Each section in sections iterable is a dict like the one that can be
passed to pdfme.content.PDFContent, so each section ends up being
a content box. This class will add as many pages as it is needed to add
all the contents of every section (content box) to the PDF document.

Additional to the keys from a content box dict, you can
include a running_sections list with the name of the
running sections that you want to be included in all of the pages of the
section. There is a special key that you can include in a section’s
style dict called page_numbering_reset, that if True, resets
the numbering of the pages.

You can also include footnotes in any paragraph, by adding a dict with the
key footnote with the description of the footnote as its value, to the
list of elements of the dot key (see pdfme.text.PDFText for more
informarion about the structure of a paragraph and the dot key).

Here is an example of a document dict, and how it can be used to build a
PDF document using the helper function pdfme.document.build_pdf().

from pdfme import build_pdf

document = {
 "style": {
 "page_size": "letter", "margin": [70, 60],
 "s": 10, "c": 0.3, "f": "Times", "text_align": "j",
 "margin_bottom": 10
 },
 "formats": {
 "link": {"c": "blue", "u": True},
 "title": {"s": 12, "b": True}
 },
 "running_sections": {
 "header": {
 "x": "left", "y": 40, "height": "top",
 "content": ["Document with header"]
 },
 "footer": {
 "x": "left", "y": "bottom", "height": "bottom",
 "style": {"text_align": "c"},
 "content": [{".": ["Page ", {"var": "$page"}]}]
 }
 },
 "sections": [
 {
 "running_sections": ["header", "footer"],
 "style": {"margin": 60},
 "content": [
 {".": "This is a title", "style": "title"},
 {".": [
 "Here we include a footnote",
 {"footnote": "Description of a footnote"},
 ". And here we include a ",
 {
 ".": "link", "style": "link",
 "uri": "https://some.url.com"
 }
]}
]
 },
 {
 "running_sections": ["footer"],
 "style": {"rotate_page": True},
 "content": [
 "This is a rotated page"
]
 }
]
}

with open('document.pdf', 'wb') as f:
 build_pdf(document, f)

	Parameters

	
	document (dict) – a dict like the one just described.

	context (dict, optional) – a dict containing the context of the inner
pdfme.pdf.PDF instance.

	
run()

	Method to process this document sections.

	
output(buffer)

	Method to create the PDF file.

	Parameters

	buffer (file_like) – a file-like object to write the PDF file into.

	
pdfme.document.build_pdf(document, buffer, context=None)

	Function to build a PDF document using a PDFDocument instance. This is
the easiest way to build a PDF document file in this library. For more
information about arguments document, and context see
pdfme.document.PDFDocument.

	Parameters

	buffer (file_like) – a file-like object to write the PDF file into.

pdfme.encoders

	
pdfme.encoders.encode_stream(stream, filter, parameters=None)

	Function to use filter method to encode stream, using
parameters if required.

	Parameters

	
	stream (bytes) – the stream to be encoded.

	filter (bytes) – the method to use for the encoding process.

	parameters (dict, optional) – if necessary, this dict contains the
parameters required by the filter method.

	Raises

	
	NotImplementedError – if the filter passed is not implemented yet.

	Exception – if the filter passed doesn’t exist.

	Returns

	the encoded stream.

	Return type

	bytes

	
pdfme.encoders.flate_encode(stream)

	Function that encodes a bytes stream using the zlib.compress method.

	Parameters

	stream (bytes) – stream to be encoded.

	Returns

	the encoded stream.

	Return type

	bytes

pdfme.fonts

	
class pdfme.fonts.PDFFont(ref)

	Bases: abc.ABC

Abstract class that represents a PDF font.

	Parameters

	ref (str) – the name of the font, included in every paragraph and page
that uses this font.

	
property ref

	Property that returns the name (ref) of this font.

	Returns

	the name of this font

	Return type

	str

	
abstract property base_font

	Abstract property that should return this font’s base font name.

	Returns

	the base font name

	Return type

	str

	
abstract get_char_width(char)

	Abstract method that should return the width of char character
in this font.

	Parameters

	char (str) – the character.

	Returns

	the character’s width.

	Return type

	float

	
abstract get_text_width(text)

	Abstract method that should return the width of the text string
in this font.

	Parameters

	text (str) – the sentence to measure.

	Returns

	the sentence’s width.

	Return type

	float

	
abstract add_font(base)

	Abstract method that should add this font to the PDFBase instance,
passed as argument.

	Parameters

	base (PDFBase) – the base instance to add this font.

	
class pdfme.fonts.PDFStandardFont(ref, base_font, widths)

	Bases: pdfme.fonts.PDFFont

This class represents a standard PDF font.

	Parameters

	
	ref (str) – the name of this font.

	base_font (str) – the base font name of this font.

	widths (dict) – the widths of each character in this font.

	
property base_font

	See pdfme.fonts.PDFFont.base_font()

	
get_char_width(char)

	See pdfme.fonts.PDFFont.get_char_width()

	
get_text_width(text)

	See pdfme.fonts.PDFFont.get_text_width()

	
add_font(base)

	See pdfme.fonts.PDFFont.add_font()

	
class pdfme.fonts.PDFTrueTypeFont(ref, filename=None)

	Bases: pdfme.fonts.PDFFont

This class represents a TrueType PDF font.

This class is not working yet.

	Parameters

	
	ref (str) – the name of this font.

	base_font (str) – the base font name of this font.

	widths (dict) – the widths of each character in this font.

	
property base_font

	See pdfme.fonts.PDFFont.base_font()

	
get_char_width(char)

	See pdfme.fonts.PDFFont.get_char_width()

	
get_text_width(text)

	See pdfme.fonts.PDFFont.get_text_width()

	
load_font(filename)

	Method to extract information needed by the PDF document about this
font, from font file in filename path.

	Parameters

	filename (str) – font file path.

	Raises

	ImportError – if fonttools library is not installed.

	
add_font(base)

	See pdfme.fonts.PDFFont.add_font()

	
class pdfme.fonts.PDFFonts

	Bases: object

Class that represents the set of all the fonts added to a PDF document.

	
get_font(font_family, mode)

	Method to get a font from its font_family and mode.

	Parameters

	
	font_family (str) – the name of the font family

	mode (str) – the mode of the font you want to get. n, b,
i or bi.

	Returns

	an object that represents a PDF font.

	Return type

	PDFFont

	
load_font(path, font_family, mode='n')

	Method to add a TrueType font to this instance.

	Parameters

	
	path (str) – the location of the font file.

	font_family (str) – the name of the font family

	mode (str, optional) – the mode of the font you want to get.
n, b, i or bi.

pdfme.image

	
class pdfme.image.PDFImage(image, extension=None, image_name=None)

	Bases: object

Class that represents a PDF image.

You can pass the location path (str or pathlib.Path format) of the
image, or pass a file-like object (io.BufferedIOBase) with the image bytes, the
extension of the image, and the image name.

Only JPEG and PNG image formats are supported in this moment. PNG images are
converted to JPEG, and for this Pillow library is required.

	Parameters

	
	image (str, pathlib.Path, BufferedIOBase) – The path or file-like object of the
image.

	extension (str, optional) – If image is path-like object, this
argument should contain the extension of the image. Options are
[jpg, jpeg, png].

	image_name (str, optional) – If image is path-like object, this
argument should contain the name of the image. This name should be
unique among the images added to the same PDF document.

	
parse_jpg(bytes_)

	Method to extract metadata from a JPEG image bytes_ needed to
embed this image in a PDF document.

This method creates this instance’s attibute pdf_obj, containing
a dict that can be added to a pdfme.base.PDFBase instance as
a PDF Stream object that represents this image.

	Parameters

	bytes (BufferedIOBase) – A file-like object containing the
image.

	
parse_png(bytes_)

	Method to convert a PNG image to a JPEG image and later parse it as
a JPEG image.

This method creates this instance’s attibute pdf_obj, containing
a dict that can be added to a pdfme.base.PDFBase instance as
a PDF Stream object that represents this image.

	Parameters

	bytes (BinaryIO) – A file-like object containing the
image.

pdfme.page

	
class pdfme.page.PDFPage(base, width, height, margin_top=0, margin_bottom=0, margin_left=0, margin_right=0)

	Bases: object

Class that represents a PDF page, and has methods to add stream parts
into the internal page PDF Stream Object, and other things like
fonts, annotations and images.

This object have x and y coordinates used by the
pdfme.pdf.PDF insance that contains this page. This point is called
cursor in this class.

	Parameters

	
	base (PDFBase) – [description]

	width (Number) – [description]

	height (Number) – [description]

	margin_top (Number, optional) – [description]. Defaults to 0.

	margin_bottom (Number, optional) – [description]. Defaults to 0.

	margin_left (Number, optional) – [description]. Defaults to 0.

	margin_right (Number, optional) – [description]. Defaults to 0.

	
property y

	
	Returns

	The current vertical position of the page’s cursor, from
top (0) to bottom. This is different from _y attribute, the
position from bottom (0) to top.

	Return type

	Number

	
go_to_beginning()

	Method to set the position of the cursor’s page to the origin point
of the page, considering this page margins. The origin is at the
left-top corner of the rectangle that will contain the page’s contents.

	
add(content)

	Method to add some bytes (if a string is passed, it’s transformed
into a bytes object) representing a stream portion, into this page’s PDF
internal Stream Object.

	Parameters

	content (str, bytes) – the stream portion to be added to this page’s
stream.

	Returns

	the id of the portion added to the page’s stream

	Return type

	int

	
add_font(font_ref, font_obj_id)

	Method to reference a PDF font in this page, that will be used inside
this page’s stream.

	Parameters

	
	font_ref (str) – the ref attribute of the
pdfme.fonts.PDFFont instance that will be referenced in
this page.

	font_obj_id (PDFRef) – the object id of the font being referenced
here, already added to a pdfme.base.PDFBase instance.

	
add_annot(obj, rect)

	Method to add a PDF annotation to this page.

The object dict should have the keys describing the annotation to
be added. By default, this object will have the following key/values
by default: Type = /Annot and Subtype = /Link.
You can include these keys in object if you want to overwrite any of
the default values for them.

	Parameters

	
	obj (dict) – the annotation object.

	rect (list) – a list with the following information about the
annotation: [x, y, width, height].

	
add_link(uri_id, rect)

	Method to add a link annotation (a URI that opens a webpage from the
PDF document) to this page.

	Parameters

	
	uri_id (PDFRef) – the object id of the action object created to open
this link.

	rect (list) – a list with the following information about the
annotation: [x, y, width, height].

	
add_reference(dest, rect)

	Method to add a reference annotation (a clickable area, that takes
the user to a destination) to this page.

	Parameters

	
	dest (str) – the name of the dest being referenced.

	rect (list) – a list with the following information about the
annotation: [x, y, width, height].

	
add_image(image_obj_id, width, height)

	Method to add an image to this page.

The position of the image will be the same as x and y
coordinates of this page.

	Parameters

	
	image_obj_id (PDFRef) – the object id of the image PDF object.

	width (int, float) – the width of the image.

	height (int, float) – the height of the image.

pdfme.parser

	
class pdfme.parser.PDFObject(id_, obj=None)

	Bases: object

A class that represents a PDF object.

This object has a pdfme.parser.PDFRef id attribute representing
the id of this object inside the PDF document, and acts as a dict, so the
user can update any property of this PDF object like you would do with a
dict.

	Parameters

	
	id (PDFRef) – The id of this object inside the PDF document.

	obj (dict, optional) – the dict representing the PDF object.

	
class pdfme.parser.PDFRef(id_)

	Bases: int

An int representing the id of a PDF object.

This is a regular int that has an additional property called ref
with a representation of this object, to be referenced elsewhere in the PDF
document.

	
property ref

	
	Returns

	bytes with a representation of this object, to be referenced
elsewhere in the PDF document.

	Return type

	bytes

	
pdfme.parser.parse_obj(obj)

	Function to convert a python object to a bytes object representing the
corresponding PDF object.

	Parameters

	float, (obj (PDFObject, PDFRef, dict, list, tuple, set, bytes, bool, int,) – str): the object to be converted to a PDF object.

	Returns

	bytes representing the corresponding PDF object.

	Return type

	bytes

	
pdfme.parser.parse_dict(obj)

	Function to convert a python dict to a bytes object representing the
corresponding PDF Dictionary.

	Parameters

	obj (dict) – the dict to be converted to a PDF Dictionary.

	Returns

	bytes representing the corresponding PDF Dictionary.

	Return type

	bytes

	
pdfme.parser.parse_list(obj)

	Function to convert a python iterable to a bytes object representing the
corresponding PDF Array.

	Parameters

	obj (iterable) – the iterable to be converted to a PDF Array.

	Returns

	bytes representing the corresponding PDF Array.

	Return type

	bytes

	
pdfme.parser.parse_stream(obj)

	Function to convert a dict representing a PDF Stream object to a bytes
object.

A dict representing a PDF stream should have a '__stream__ key
containing the stream bytes. You don’t have to include Length key in the
dict, as it is calculated by us. The value of '__stream__' key must
be of type bytes or a dict whose values are of type bytes.
If you include a Filter key, a encoding is automatically done in the
stream (see pdfme.encoders.encode_stream() function for
supported encoders). If the contents of the stream are already encoded
using the filter in Filter key, you can skip the encoding process
by including the __skip_filter__ key.

	Parameters

	obj (dict) – the dict representing a PDF stream.

	Returns

	bytes representing the corresponding PDF Stream.

	Return type

	bytes

pdfme.pdf

	
class pdfme.pdf.PDF(page_size='a4', rotate_page=False, margin=56.693, page_numbering_offset=0, page_numbering_style='arabic', font_family='Helvetica', font_size=11, font_color=0.1, text_align='l', line_height=1.1, indent=0, outlines_level=1)

	Bases: object

Class that represents a PDF document, and has methods to add pages,
and to add paragraphs, images, tables and a mix of this, a content box,
to them.

You can use this class to create a PDF file, by adding one page at a
time, and adding stuff to each page you add, like this:

from pdfme import PDF

pdf = PDF()
pdf.add_page()
pdf.text('This is a paragraph')

with open('document.pdf', 'wb') as f:
 pdf.output(f)

Through the constructor arguments you can modify the default features
of the PDF document, like the size of the pages, their orientation,
the page numbering options, and the appearance of the text. These are
used everytime you create a new page, or a new paragraph, but you
can overwrite these for each case.

You can change the default values for the pages by calling
pdfme.pdf.PDF.setup_page(), and change the default values for text
by changing attributes font_family, font_size, font_color,
text_align and line_height.

Methods pdfme.pdf.PDF.text(), pdfme.pdf.PDF.image(),
pdfme.pdf.PDF.table() and pdfme.pdf.PDF.content() are the main
functions to add paragraphs, images, tables and content boxes respectively,
and all of them, except the image method, take into account the margins of
the current page you are working on, and create new pages automatically if
the stuff you are adding needs more than one page. If you want to be
specific about the position and the size of the paragraphs, tables and
content boxes you are inserting, you can use methods
pdfme.pdf.PDF._text(), pdfme.pdf.PDF._table() and
pdfme.pdf.PDF._content() instead, but these don’t handle the creation
of new pages like the first ones.

Each page has attributes x and y that are used to place elements
inside them, and for the methods that receive x and y arguments,
if they are None, the page’s x and y attributes are used instead.

For more information about paragraphs see pdfme.text.PDFText, and
about tables pdfme.table.PDFTable.

Although you can add all of the elements explained so far, we recommend
using content boxes only, because all of the additional funcionalities they
have, including its ability to embed other elements. For more information
about content boxes see pdfme.content.PDFContent.

Paragraphs, tables and content boxes use styles to give format to the
content inside of them, and sometimes styling can get repetitive. This is
why there’s a dict attribute called formats where you can add named
style dicts and used them everywhere inside this document, like this:

from pdfme import PDF

pdf = PDF()
pdf.formats['link'] = {
 'c': 'blue',
 'u': True
}
pdf.add_page()
pdf.text({
 '.': 'this is a link',
 'style': 'link',
 'uri': 'https://some.domain.com'
})

If you find yourself using a piece of text often in the document, you can
add it to the dict attribute context and include it in any paragraph in
the document by using its key in the dict, like this:

from pdfme import PDF

pdf = PDF()
pdf.context['arln'] = 'A Really Long Name'
pdf.add_page()
pdf.text({
 '.': ['The following name is ', {'var': 'arln'}, '.']
})

There are some special context variables that are used by us that start
with symbol $, so it’s adviced to name your own variables without this
symbol in the beginning. The only of these variables you should care about
is $page that contains the number of the current page.

You can add as much running sections as you want by using
pdfme.pdf.PDF.add_running_section(). Running sections are
content boxes that are included on every page you create after adding them.
Through these you can add a header and a footer to the PDF.

If you want a simpler and more powerful interface, you should use
pdfme.document.PDFDocument.

	Parameters

	
	page_size (str, int, float, tuple, list, optional) – this argument sets
the dimensions of the page. See pdfme.utils.get_page_size().

	rotate_page (bool, optional) – whether the page dimensions should be
inverted (True), or not (False).

	margin (str, int, float, tuple, list, dict, optional) – the margins of
the pages. See pdfme.utils.parse_margin().

	page_numbering_offset (int, float, optional) – if the number of the page
is included, this argument will set the offset of the page. For
example if the current page is the 4th one, and the offset is 3, the
page number displayed in the current page will be 1.

	page_numbering_style (str, optional) – the style of the page number.
Options are arabic (1,2,3,…) and roman (I, II, III, IV,
…).

	font_family (str, optional) – The name of the font family. Options are
Helvetica (default), Times, Courier, Symbol and
ZapfDingbats. You will also be able to add new fonts in a future
release.

	font_size (in, optional) – The size of the font.

	font_color (int, float, str, list, tuple, optional) – The color of the
font. See pdfme.color.parse_color().

	text_align (str, optional) – 'l' for left (default), 'c' for
center, 'r' for right and 'j' for justified text.

	line_height (int, float, optional) – space between the lines of the
paragraph. See pdfme.text.PDFText.

	indent (int, float, optional) – space between left of the paragraph, and
the beggining of the first line. See pdfme.text.PDFText.

	outlines_level (int, optional) – the level of the outlines to be
displayed on the outlines panel when the PDF document is opened.

	
property page

	
	Returns

	current page

	Return type

	PDFPage

	
property page_index

	
	Returns

	current page index.

	Return type

	int

	
property width

	
	Returns

	current page width

	Return type

	float

	
property height

	
	Returns

	current page height

	Return type

	float

	
setup_page(page_size=None, rotate_page=None, margin=None)

	Method to set the page features defaults. These values will be used
from now on when adding new pages.

	Parameters

	
	page_size (str, int, float, tuple, list, optional) – this argument
sets the dimensions of the page.
See pdfme.utils.get_page_size().

	rotate_page (bool, optional) – whether the page dimensions should be
inverted (True), or not (False).

	margin (str, int, float, tuple, list, dict, optional) – the margins
of the pages. See pdfme.utils.parse_margin().

	
add_page(page_size=None, rotate_page=None, margin=None)

	Method to add a new page. If provided, arguments will only apply for
the page being added.

	Parameters

	
	page_size (str, int, float, tuple, list, optional) – this argument
sets the dimensions of the page.
See pdfme.utils.get_page_size().

	rotate_page (bool, optional) – whether the page dimensions should be
inverted (True), or not (False).

	margin (str, int, float, tuple, list, dict, optional) – the margins
of the page. See pdfme.utils.parse_margin().

	
add_running_section(content, width, height, x, y)

	Method to add running sections, like a header and a footer, to this
document.

Running sections are content boxes that are included on every page you
create after adding them.

	Parameters

	
	content (dict) – a content dict like the one you pass to create a
instance of pdfme.content.PDFContent.

	width (int, float, optional) – The width of the rectangle where the
contents will be arranged.

	height (int, float, optional) – The height of the rectangle where the
contents will be arranged.

	x (int, float, optional) – The x position of the left of the
rectangle.

	y (int, float, optional) – The y position of the top of the
rectangle.

	
add_font(fontfile, font_family, mode='n')

	Method to add a new font to this document. This functionality is not
ready yet.

	Parameters

	
	fontfile (str) – the path of the fontfile.

	font_family (str) – the name of the font family being added.

	mode (str, optional) – the mode of the font being added. It can be
n for normal, b for bold and i for italics
(oblique).

	
create_image(image, extension=None, image_name=None)

	Method to create a PDF image.

Arguments for this method are the same as pdfme.image.PDFImage.

	Returns

	object representing the PDF image.

	Return type

	PDFImage

	
add_image(pdf_image, x=None, y=None, width=None, height=None, move='bottom')

	Method to add a PDF image to the current page.

	Parameters

	
	pdf_image (PDFImage) – the PDF image.

	x (int, float, optional) – The x position of the left of the
image.

	y (int, float, optional) – The y position of the top of the
image.

	width (int, float, optional) – The width of the image. If this and
height are None, the width will be the same as the page
content width, but if this is None and height is not, the
width will be calculated from height, keeping the proportion
of the image.

	height (int, float, optional) – The height of the image. If this is
None, the height will be calculated from the image width,
keeping the proportion.

	move (str, optional) – wheter it should move page x coordinate to
the right side of the image (next) or if it should move
page y coordinate to the bottom of the image (bottom)
(default).

	
image(image, extension=None, image_name=None, x=None, y=None, width=None, height=None, move='bottom')

	Method to create and add a PDF image to the current page.

	Parameters

	
	image (str, Path, BytesIO) – see pdfme.image.PDFImage.

	extension (str, optional) – see pdfme.image.PDFImage.

	image_name (str, optional) – see pdfme.image.PDFImage.

	x (int, float, optional) – the x position of the left of the
image.

	y (int, float, optional) – the y position of the top of the
image.

	width (int, float, optional) – the width of the image. If this and
height are None, the width will be the same as the page
content width, but if this is None and height is not, the
width will be calculated from height, keeping the proportion
of the image.

	height (int, float, optional) – the height of the image. If this is
None, the height will be calculated from the image width,
keeping the proportion.

	move (str, optional) – wheter it should move page x coordinate to
the right side of the image (next) or if it should move
page y coordinate to the bottom of the image (bottom)
(default).

	
get_page_number()

	Method that returns the string reprensentation of the number of the
current page.

	Returns

	string with the page number that depends on attributes
page_numbering_offset and page_numbering_style.

	Return type

	str

	
_text(content, width=None, height=None, x=None, y=None, text_align=None, line_height=1.1, indent=0, list_text=None, list_indent=None, list_style=None, move='bottom')

	Method to create and add a paragraph to the current page.

If content is a PDFText, the method run for this instance will
be called with the new rectangle passed to this function.
Else, this method will try to build a new PDFText instance with argument
content and call method run afterwards.

For more information about the arguments see
pdfme.text.PDFText.

	Returns

	object that represents the paragraph.

	Return type

	PDFText

	
text(content, text_align=None, line_height=1.1, indent=0, list_text=None, list_indent=None, list_style=None)

	Method to create and add a paragraph to this document. This method
will keep adding pages to the PDF until all the contents of the
paragraph are added to the document.

For more information about the arguments see
pdfme.text.PDFText.

	
_table(content, width=None, height=None, x=None, y=None, widths=None, style=None, borders=None, fills=None, move='bottom')

	Method to create and add a table to the current page.

If content is a PDFTable, the method run for this instance will
be called with the new rectangle passed to this function.
Else, this method will try to build a new PDFTable instance with
argument content and call method run afterwards.

For more information about this method arguments see
pdfme.table.PDFTable.

	Returns

	object that represents a table.

	Return type

	PDFTable

	
table(content, widths=None, style=None, borders=None, fills=None)

	Method to create and add a table to this document. This method
will keep adding pages to the PDF until all the contents of the
table are added to the document.

For more information about this method arguments see
pdfme.table.PDFTable.

	
_content(content, width=None, height=None, x=None, y=None, move='bottom')

	Method to create and add a content box to teh current page.

If content is a PDFContent, the method run for this instance
will be called with the new rectangle passed to this function.
Else, this method will try to build a new PDFContent instance with
argument content and call method run afterwards.

For more information about this method arguments see
pdfme.content.PDFContent.

	Returns

	object that represents a content box.

	Return type

	PDFContent

	
content(content)

	Method to create and add a content box to this document. This method
will keep adding pages to the PDF until all the contents are added to
the document.

	Parameters

	content (dict) – see pdfme.content.PDFContent.

	
output(buffer)

	Method to create the PDF file.

	Parameters

	buffer (file_like) – a file-like object to write the PDF file into.

	Raises

	Exception – if this document doesn’t have any pages.

pdfme.table

	
class pdfme.table.PDFTable(content, fonts, x, y, width, height, widths=None, style=None, borders=None, fills=None, pdf=None)

	Bases: object

Class that represents a PDF table.

The content argument is an iterable representing the rows of the table,
and each row should be an iterable too, representing each of
the columns in the row. The elements on a row iterable could be any of the
elements that you pass to argument content list in class
pdfme.content.PDFContent. Because of this you can add paragraphs,
images and content boxes into a table cell.

Argument widths, if passed, should be an iterable with the width of
each column in the table. If not passed, all the columns will have the same
width.

Argument style, if passed, should be a dict with any of the following
keys:

	cell_margin: the margin of the four sides of the cells in the table.
Default value is 5.

	cell_margin_left: left margin of the cells in the table.
Default value is cell_margin.

	cell_margin_top: top margin of the cells in the table.
Default value is cell_margin.

	cell_margin_right: right margin of the cells in the table.
Default value is cell_margin.

	cell_margin_bottom: bottom margin of the cells in the table.
Default value is cell_margin.

	cell_fill: the color of all the cells in the table. Default value is
None (transparent). See pdfme.color.parse_color() for information
about this attribute.

	border_width: the width of all the borders in the table. Default value
is 0.5.

	border_color: the color of all the borders in the table .Default value
is 'black'. See pdfme.color.parse_color() for information
about this attribute.

	border_style: the style of all the borders in the table. It can be
solid, dotted or solid. Default value is solid.

You can overwrite the default values for the cell fills and the borders with
fills and borders arguments.
These arguments, if passed, should be iterables of dicts. Each dict should
have a pos key that contains a string with information of the vertical
(rows) and horizontal (columns) position of the fills or borders you want
to change, and for this, such a string should has 2 parts separated by a
semi colon, the first one for the vertical position and the second one for
the horizontal position.
The position can be a single int, a comma-separated list of ints, or a slice
(range), like the one you pass to get a slice of a python list. For borders
you have to include a h or a v before the positions, to tell if you
want to change vertical or horizontal borders. The indexes in this string
can be negative, referring to positions from the end to the beginning.

The following are examples of valid pos strings:

	'h0,1,-1;:' to modify the first, second and last horizontal lines in
the table. The horizontal position is a single colon, and thus the whole
horizontal lines are affected.

	'::2;:' to modify all of the fills horizontally, every two rows. This
would set the current fill to all the cells in the first row, the third
row, the fifth row and so on.

Additional to the pos key for dicts inside fills iterable, you
have to include a color key, with a valid color value. See
pdfme.color.parse_color() for information about this attribute.

Additional to the pos key for dicts inside borders iterable, you
can include width (border width), color (border color) and
style (border style) keys.

If a cell element is a dict it’s style dict can have any of the
following keys: cell_margin, cell_margin_left, cell_margin_top,
cell_margin_right, cell_margin_bottom and cell_fill, to overwrite
the default value of any of these parameters on its cell.
In a cell dict, you can also include colspan and rowspan keys, to
span it horizontally and vertically respectively. The cells being merged to
this spanned cell should be None.

Here’s an example of a valid content value:

[
 ['row 1, col 1', 'row 1, col 2', 'row 1, col 3'],
 [
 'row2 col1',
 {
 'style': {'cell_margin': 10, }
 'colspan': 2, 'rowspan': 2
 '.': 'rows 2 to 3, cols 2 to 3',
 },
 None
],
 ['row 3, col 1', None, None],
]

Use method pdfme.table.PDFTable.run() to add as many rows as possible
to the rectangle defined by x, y`, width and height.
The rows are added to this rectangle, until
they are all inside of it, or until all of the vertical space is used and
the rest of the rows can not be added. In these two cases method run
finishes, and the property finished will be True if all the elements
were added, and False if the vertical space ran out.
If finished is False, you can set a new rectangle (on a new page for
example) and use method run again (passing the parameters of the new
rectangle) to add the remaining elements that couldn’t be added in
the last rectangle. You can keep doing this until all of the elements are
added and therefore property finished is True.

By using this method the rows are not really added to the PDF object.
After calling run, the properties fills and lines will be
populated with the fills and lines of the tables that fitted inside the
rectangle, and parts will be filled with the paragraphs and images that
fitted inside the table rectangle too, and you have to add them by yourself
to the PDF object before using method run again (in case finished is
False), because they will be redefined for the next rectangle after calling
it again. You can check the table method in PDF [https://github.com/aFelipeSP/pdfme/blob/main/pdfme/pdf.py] module to see how
this process is done.

	Parameters

	
	content (iterable) – like the one just explained.

	fonts (PDFFonts) – a PDFFonts object used to build paragraphs.

	x (int, float) – the x position of the left of the table.

	y (int, float) – the y position of the top of the table.

	width (int, float) – the width of the table.

	height (int, float) – the height of the table.

	widths (Iterable, optional) – the widths of each column.

	style (Union[dict, str], optional) – the default style of the table.

	borders (Iterable, optional) – borders of the table.

	fills (Iterable, optional) – fills of the table.

	pdf (PDF, optional) – A PDF object used to get string styles inside the
elements.

	
setup(x=None, y=None, width=None, height=None)

	Method to change the size and position of the table.

	Parameters

	
	x (int, float, optional) – the x position of the left of the table.

	y (int, float, optional) – the y position of the top of the table.

	width (int, float, optional) – the width of the table.

	height (int, float, optional) – the height of the table.

	
get_state()

	Method to get the current state of this table. This can be used
later in method pdfme.table.PDFTable.set_state() to
restore this state in this table (like a checkpoint in a
videogame).

	Returns

	a dict with the state of this table.

	Return type

	dict

	
set_state(current_index=None, delayed=None)

	Method to set the state of this table.

The arguments of this method define the current state of this table,
and with this method you can change that state.

	Parameters

	
	current_index (int, optional) – the index of the current row being
added.

	delayed (dict, optional) – a dict with delayed cells that should be
added before the next row.

	
set_default_border()

	Method to create attribute default_border containing the default
border values.

	
parse_pos_string(pos, counts)

	Method to convert a position string like the ones used in
borders and fills arguments of this class, into a generator
of positions obtained from this string.

For more information, see the definition of this class.

	Parameters

	
	pos (str) – position string.

	counts (int) – the amount of columns or rows.

	Yields

	tuple – the horizontal and vertical index of each position obtained
from the pos string.

	
parse_range_string(data, count)

	Method to convert one of the parts of a position string like the ones
used in borders and fills arguments of this class, into a
iterator with all the positions obtained from this string.

For more information, see the definition of this class.

	Parameters

	
	data (str) – one of the parts of a position string.

	counts (int) – the amount of columns or rows.

	Returns

	a list of indexes, or a range object.

	Return type

	iterable

	
setup_borders(borders)

	Method to process the borders argument passed to this class, and
populate attributes borders_h and borders_v.

	Parameters

	borders (iterable) – the borders argument passed to this class.

	
get_border(i, j, is_vert)

	Method to get the border in the horizontal position i, and
vertical position j. It takes a vertical border if is_vert is
true, and a horizontal border if is_vert is false
:param i: horizontal position.
:type i: int
:param j: vertical position.
:type j: int
:param is_vert: vertical (True) or horizontal (False) border.
:type is_vert: bool

	Returns

	dict with description of the border in position i, j.

	Return type

	dict

	
setup_fills(fills)

	Method to process the fills argument passed to this class, and
populate attribute fills_defs.

	Parameters

	fills (iterable) – the fills argument passed to this class.

	
compare_borders(a, b)

	Method that compares border dicts a and b and returns if they
are equal (True) or not (False)

	Parameters

	
	a (dict) – first border.

	b (dict) – second border.

	Returns

	if a and b are equal (True) or not (False).

	Return type

	bool

	
process_borders(col, border_left, border_top)

	Method to setup the top and left borders of each cell

	Parameters

	
	col (int) – the columns number.

	border_left (dict) – the left border dict.

	border_top (dict) – the top border dict.

	
run(x=None, y=None, width=None, height=None)

	Method to add as many rows as possible to the rectangle defined by
x, y`, width and height attributes.

More information about this method in this class definition.

	Parameters

	
	x (int, float, optional) – the x position of the left of the table.

	y (int, float, optional) – the y position of the top of the table.

	width (int, float, optional) – the width of the table.

	height (int, float, optional) – the height of the table.

	
add_row(row, is_delayed=False)

	Method to add a row to this table.

	Parameters

	
	row (iterable) – the row iterable.

	is_delayed (bool, optional) – whether this row is being added in
delayed mode (True) or not (False).

	Returns

	string with the action that should be performed after this row
is added.

	Return type

	str

	
get_cell_dimensions(col, border_left, border_top, cell_style, rowspan, colspan)

	Method to get the cell dimensions at column col, taking into
account the cell borders, and the column and row spans.

	Parameters

	
	col (int) – the column of the cell.

	border_left (dict) – left border dict.

	border_top (dict) – top border dict.

	cell_style (dict) – cell style dict.

	rowspan (int) – the row span.

	colspan (int) – the column span.

	Returns

	tuple with position (x, y), size (width, height),
and padding (left, top) for this cell.

	Return type

	tuple

	
is_span(col, border_left, border_top, is_delayed)

	Method to check if cell at column col is part of a spanned cell
(True) or not (False).

	Parameters

	
	col (int) – the column of the cell.

	border_left (dict) – left border dict.

	border_top (dict) – top border dict.

	is_delayed (bool, optional) – whether this row is being added in
delayed mode (True) or not (False).

	Returns

	whether col is part of a spanned cell (True) or not
(False).

	Return type

	bool

	
get_cell_style(element)

	Method to extract the cell style from a cell element.

	Parameters

	element (dict, str, list, tuple) – the cell element to extract the
cell style from.

	Returns

	tuple with a copy of element, the element style,
and the cell_style.

	Return type

	tuple

	
is_type(el, type_)

	

	
add_cell(col, element, is_delayed)

	Method to add a cell to the current row.

	Parameters

	
	col (int) – the column index for the cell.

	element (dict, str, list, tuple) – the cell element to be added.

	is_delayed (bool, optional) – whether current row is being added in
delayed mode (True) or not (False).

	Returns

	whether col is part of a spanned cell (True) or not
(False).

	Return type

	bool

	
process_text(element, x, y, width, height, style, delayed)

	Method to add a paragraph to a cell.

	Parameters

	
	col (int) – the column index of the cell.

	element (dict) – the paragraph element

	x (Number) – the x coordinate of the paragraph.

	y (Number) – the y coordinate of the paragraph.

	width (Number) – the width of the paragraph.

	height (Number) – the height of the paragraph.

	style (dict) – the paragraph style.

	delayed (dict) – the delayed element to add the current paragraph if
it can not be added completely to the current cell.

	Returns

	the height of the paragraph.

	Return type

	float

	
process_image(element, x, y, width, height, delayed)

	Method to add an image to a cell.

	Parameters

	
	col (int) – the column index of the cell.

	element (dict) – the image element

	x (Number) – the x coordinate of the image.

	y (Number) – the y coordinate of the image.

	width (Number) – the width of the image.

	height (Number) – the height of the image.

	delayed (dict) – the delayed element to add the current image if
it can not be added to the current cell.

	Returns

	the height of the image.

	Return type

	float

	
process_content(element, x, y, width, height, style, delayed)

	Method to add a content box to a cell.

	Parameters

	
	col (int) – the column index of the cell.

	element (dict) – the content box element

	x (Number) – the x coordinate of the content box.

	y (Number) – the y coordinate of the content box.

	width (Number) – the width of the content box.

	height (Number) – the height of the content box.

	style (dict) – the content box style.

	delayed (dict) – the delayed element to add the current content box
if it can not be added completely to the current cell.

	Returns

	the height of the content box.

	Return type

	float

	
process_table(element, x, y, width, height, style, delayed)

	Method to add a table to a cell.

	Parameters

	
	col (int) – the column index of the cell.

	element (dict) – the table element

	x (Number) – the x coordinate of the table.

	y (Number) – the y coordinate of the table.

	width (Number) – the width of the table.

	height (Number) – the height of the table.

	style (dict) – the table style.

	delayed (dict) – the delayed element to add the current table if
it can not be added completely to the current cell.

	Returns

	the height of the table.

	Return type

	float

pdfme.text

	
class pdfme.text.PDFState(style, fonts)

	Bases: object

Class that represents the state of a paragraph line part.

The state is a lower level version of the style, and is used by the other
paragraph classes to make calculations and yield the paragraph PDF stream.

	Parameters

	
	style (dict) – the paragraph line part style.

	fonts (PDFFonts) – the fonts instance with the information about
the fonts already added to the PDF document.

	
compare(other)

	Compares this state, with state other and returns a PDF stream
with the differences between both states.

	Parameters

	other (PDFState) – the state to compare.

	Returns

	a PDF stream with the differences between both states.

	Return type

	str

	
class pdfme.text.PDFTextLinePart(style, fonts, ids=None)

	Bases: object

This class represents a part of a paragraph line, with its own style.

	Parameters

	
	style (dict) – the style of this line part.

	fonts (PDFFonts) – the fonts instance with the information about
the fonts already added to the PDF document.

	ids (list, optional) – the ids of this part.

	
pop_word(index=None)

	Function to delete the last word of this part if index is None,
and the word in the position index if it’s not None.

	Parameters

	index (int, optional) – word index.

	Returns

	
	if word in index could be deleted, the deleted word is
	returned, if not None is returned.

	Return type

	str

	
add_word(word)

	Function to add a word to this part.

	Parameters

	word (str) – the word.

	
current_width(factor=1)

	Return the width of this part, according to the words added to this
part, using factor to calculate this width of the spaces in this
part.

	Parameters

	factor (int, float, optional) – to calculate this width of the spaces
in this part.

	Returns

	width of this part.

	Return type

	float

	
tentative_width(word, factor=1)

	The same as method current_width, but adding the width of
word.

	Parameters

	
	word (str) – the word that could be added to this part.

	factor (int, float, optional) – to calculate this width of the spaces
in this part.

	Returns

	the width of this part + the width of the word passed.

	Return type

	float

	
get_char_width(char)

	The width of the character passed.

	Parameters

	char (str) – the character string.

	Returns

	the width of the character passed.

	Return type

	float

	
get_word_width(word)

	The width of the word passed.

	Parameters

	char (str) – the word string.

	Returns

	the width of the word passed.

	Return type

	float

	
class pdfme.text.PDFTextLine(fonts, max_width=0, text_align=None, top_margin=0)

	Bases: object

Class that represents a line of a paragraph.

This class has the logic to add paragraph parts, and inside them add their
words one by one, until all of the horizontal space of the paragraph has
been used. For more information about this mechanism check the method
pdfme.text.PDFTextLine.add_word().

	Parameters

	
	fonts (PDFFonts) – to extract information about the fonts
being used in the paragraph.

	max_width (int, float, optional) – the maximum horizontal space that this
line can use.

	text_align (str, optional) – 'l' for left (default), 'c' for
center, 'r' for right and 'j' for justified text.

	top_margin (Number, optional) – if not None, this is the top margin of
the line, added to the actual line height.

	
property height

	Property that returns the line height, calculated from the vertical
space of each part of the line.

	Returns

	the line height.

	Return type

	float

	
property min_width

	Property that returns the width of the line, calculated using the
minimum value for attribute factor. This attribute is used to
increase or decrease the space character width inside a line to

	Returns

	the line width.

	Return type

	float

	
property bottom

	Property that returns the line bottom, calculated from the vertical
space of each part of the line.

	Returns

	the line bottom.

	Return type

	float

	
get_widths()

	This function returns the widths of the line.

	Returns

	
	of 2 elements, the width on the words as the first, and the
	width of the spaces as the second.

	Return type

	tuple

	
add_line_part(style=None, ids=None)

	Add a new line part to this line.

	Parameters

	
	style (dict, optional) – the style of the new part.

	ids (list, optional) – the ids of the new part.

	Returns

	The new line part that was added.

	Return type

	PDFTextLinePart

	
add_accumulated()

	Function to add the parts accumulated in the auxiliar line (
next_line attribute) to this line.

	
add_word(word)

	Function to add a word to this line.

	Parameters

	word (str) – The word to be added.

	Returns

	containing a status key, with one of the following values:

	'added': The word passed was added to the auxiliar line, or
if the word is a space the accumulated words in the auxiliar line,
to the current line.

	'ignored': The word passed (a space) was ignored.

	'preadded': The word passed was added to the auxiliar line.

	'finished': The word didn’t fit in the current line, and this
means this line is full. Because of this, a new line is created
to put this word, and this new line is returned in the key
'new_line'.

	Return type

	dict

	
class pdfme.text.PDFTextBase(content, width, height, x=0, y=0, fonts=None, text_align=None, line_height=None, indent=0, list_text=None, list_indent=None, list_style=None, pdf=None)

	Bases: object

Class that represents a rich text paragraph to be added to a
pdfme.pdf.PDF instance.

You should use pdfme.text.PDFText instead of this class, because
it has more functionalities.

To create the data needed to add this paragraph to the PDF document,
you have to call the method pdfme.text.PDFTextBase.run(), which
will try to add all of the dict parts in content argument list (or
tuple) to the rectangle defined by args x, y, width and
height.

Each part represents a part of the paragraph with a different style or with
a var or a specific id.

The parts are added to this rectangle, until they are all
inside of it, or until all of the vertical space is used and the rest of
the parts can not be added. In these two cases method run
finishes, and the property finished will be True if all the parts
were added, and False if the vertical space ran out.
If finished is False, you can set a new rectangle (on a new page for
example) and use method run again (passing the parameters of the new
rectangle) to add the remaining parts that couldn’t be added in the
last rectangle. You can keep doing this until all of the parts are
added and therefore property finished is True.

By using method run the paragraph is not really added to the PDF
object. After calling run, the property result will be
available with the information needed to be added to the PDF, at least
the parts that fitted inside the rectangle. You have to use the
property result to add the paragraph to the PDF object before
using method run again (in case finished is False), because
it will be redefined for the next rectangle after calling run again.
You can check the text method in PDF [https://github.com/aFelipeSP/pdfme/blob/main/pdfme/pdf.py] module to see how this
process is done.

The other args not defined here, are explained in
pdfme.text.PDFText.

	Parameters

	content (str, list, tuple) – If this is a string, it will
become the following:

[{'style': <DEFAULT_STYLE>, 'text': <STRING>}]

If this is a list or a tuple, its elements should be dicts with the
following keys:

	'text': this is the text that will be displayed with the style
defined in style key.

	'style': this is a style dict like the one described in
pdfme.text.PDFText.

	'ids': see pdfme.text.PDFText definition.

	'var': see pdfme.text.PDFText definition.

	Raises

	TypeError – if content is not a str, list or tuple.

	
property stream

	Property that returns the PDF stream generated by the method run,
with all of the graphics and the text, ready to be added to a PDF page
stream.

	Returns

	the stream.

	Return type

	str

	
property result

	Property that returns a dict with the result of calling method
run, and can be passed to method
pdfme.pdf.PDF._add_text(), to add this paragraph to that
PDF document’s page. Check method _add_parts from
pdfme.pdf.PDF to see how a dict like the one returned by
this method (a paragraph part) is added to a PDF instance.

The dict returned will have the following keys:

	x the x coordinate.

	y the y coordinate.

	width of the paragraph.

	height of the paragraph.

	text_stream a string with the paragraphs PDF text stream.

	graphics_stream a string with the paragraphs PDF graphics stream.

	used_fonts a set with tuples of 2 elements, first element the
font family, and second element the font mode.

	ids a dict with every id extracted from the paragraph.

	Returns

	like the one described.

	Return type

	dict

	
get_state()

	Method to get the current state of this paragraph. This can be used
later in method pdfme.text.PDFText.set_state() to
restore this state in this paragraph (like a checkpoint in a
videogame).

	Returns

	a dict with the state of this paragraph.

	Return type

	dict

	
set_state(last_part=None, last_word=None)

	Function to update the state of the paragraph

The arguments of this method define the current state of this paragraph,
and with this method you can change that state.

	Parameters

	
	last_part (int) – this is the index of the part that was being
processed the last time method run was called.

	last_word (int) – this is the index of the
word of the last part that was added the last time method
run was called.

	
setup(x=None, y=None, width=None, height=None)

	Function to change any or all of the parameters of the rectangle of
the content.

	Parameters

	
	x (int, float, optional) – The x coordinate of the left of the
rectangle.

	y (int, float, optional) – The y coordinate of the top of the
rectangle.

	width (int, float, optional) – The width of the rectangle where the
contents will be arranged.

	height (int, float, optional) – The height of the rectangle where the
contents will be arranged.

	last_part (int, optional) – If not None, this is the index of the
part that was being processed the last time method run was
called.

	last_word (int, optional) – If not None, this is the index of the
word of the last part that was added the last time method
run was called.

	
init()

	Function to reset all of the instance properties that have to be
resetted before running the arranging process in a new rectangle.

This function is called by method run.

	
run(x=None, y=None, width=None, height=None)

	Function to create the data needed to add this paragraph to the PDF
document.

This function will try to add all of the dict parts in content
argument list (or tuple) to this paragraph rectangle. Check this class
documentation for more information about this method.

This function args are the same as
pdfme.text.PDFTextBase.setup().

	Returns

	The dict from the property result.

	Return type

	dict

	
add_part(part, part_index)

	Function used by methodm run to add one paragraph part at a time.

	Parameters

	
	part (dict) – part to be added.

	part_index (int) – index of the part to be added.

	Returns

	
	whether it was able to add all of the parts (True) or the
	vertical space ran out.

	Return type

	bool

	
add_current_line(is_last=False)

	Function to add the current line to the list of already added lines.

	Parameters

	is_last (bool, optional) – whether this is the last line of this
paragraph (True) or not (False).

	Returns

	whether this line was successfully added (True) or not (False)

	Return type

	bool

	
setup_list()

	This function is called when the first part of the paragraph is going
to be added, and if this is a list paragraph, i.e. a paragraph with a
something on its left (a bullet, a number, etc), this function will
setup everything needed to display the text of the list paragraph, and
will adjust its width to make space for the list text.

	Raises

	TypeError – if list_style or list_indent passed to this instance
 are not a dict and an number respectively.

	
add_line_to_stream(line, is_last=False)

	Function to add a PDFTextLine representing a paragraph line to the
already added lines stream.

	Parameters

	
	line (PDFTextLine) – The line to be added to the stream.

	is_last (bool, optional) – whether this is the last line of this
paragraph (True) or not (False).

	
clean_words(words)

	This function joins a list of words (spaces included) and makes the
resulting string compatible with a PDF string.

	Parameters

	words (list) – a list of strings, where each string is a word.

	Returns

	A string with all of the words passed.

	Return type

	str

	
output_text(part, text, factor=1)

	Function that creates a piece of PDF stream (only the text), from
the PDFTextLinePart and the text arguments.

	Parameters

	
	part (PDFTextLinePart) – the part to be transformed into a string
representing a PDF stream piece.

	text ([type]) – the text to be transformed into a string
representing a PDF stream piece.

	factor (Number, optional) – factor of the line needed to create
center, right and justified aligned paragraphs.

	Returns

	representing the PDF stream

	Return type

	str

	
output_graphics(part, x, y, part_width)

	Function that creates a piece of PDF stream (only the graphics),
from the PDFTextLinePart argument.

	Parameters

	
	part (PDFTextLinePart) – the part to be transformed into a string
representing a PDF stream piece.

	x (int, float) – the x origin coordinate of the graphics being added.

	y (int, float) – the y origin coordinate of the graphics being added.

	width (int, float) – the width of the part being added

	Returns

	representing the PDF stream

	Return type

	str

	
class pdfme.text.PDFText(content, width, height, x=0, y=0, fonts=None, text_align=None, line_height=None, indent=0, list_text=None, list_indent=None, list_style=None, pdf=None)

	Bases: pdfme.text.PDFTextBase

Class that represents a rich text paragraph to be added to a
pdfme.pdf.PDF instance.

content argument should be a dict, with a key starting with a dot, like
'.b;s:10;c:1;u' for example (keep reading to learn more about the format
of this key), which we are going to refer to as the “the dot key” from here
on. The value for the dot key is a list/tuple containing strings or more
content dicts like the one we are describing here (you can have nested
content dicts or what we call a paragraph part), but for simplicity,
you can pass a string (for non-rich text) or a tuple/list with strings and
more paragraph parts:

	If content argument is a string, it will become the following:

{ '.': [<STRING>,] }

	If content argument is a list/tuple, it will become the following:

{ '.': <LIST_OR_TUPLE> }

This is an example of a content argument:

{
 ".b;u;i;c:1;bg:0.5;f:Courier": [
 "First part of the paragraph ",
 {
 ".b:0;u:0;i:0;c:0;bg:": [
 "and here the second, nested inside the root paragraph,",
]
 },
 "and yet one more part before a ",
 {".c:blue;u:1": "url link", "uri": "https://some.url.com"}
]
}

This class is a subclass of pdfme.text.PDFTextBase and adds the
logic to let the user of this class pass content in a nested cascading
“jsonish” format (like HTML), i.e. if you pass a dict to content,
and this dict has a style key, all of its children will inherit this
style and will be able to overwrite some or all of the style parameters
coming from it. The children will be able to pass their own
style parameters to their children too, and so on.

Additional to the dot key, paragraph parts can have the following keys:

	'label': this is a string with a unique name (there should be
only one label with this name in the whole document) representing
a destination that can be referenced in other parts of the
document. This is suited for titles, figures, tables, etc.

	'ref': this is a string with the name of a label, that will
become a link to the position of the label referenced.

	'uri': this is a string with a reference to a web resource,
that will turn this text part in a link to that web page.

	'outline': an outline is a label that is shown in the outlines panel
of the PDF reader. This outlines show the structure of the document.
This attribute is a dict with the following optional keys:

	level: an optional int with the level of this outline in the
outlines tree. The default value is 1.

	text: an optional string to be shown in the outlines panel for this
outline. The default value is the contents of this part.

	'ids': when method run is called, dict attr result is
available with information to add the paragraph to the PDF, and
within that information you’ll find a key ids, a dict with
the position and size of the rectangle for each of the ids you
include in this argument. This way you can “tag” a part of a
paragraph, call run, and get the position of it afterwards.

	'var': this is a string with the name of a global variable,
previously set in the containing pdfme.pdf.PDF
instance, by adding a new key to its dict attribute context.
This way you can reuse a repetitive string throughout the PDF
document.

Style of the paragraph dicts can be defined in the dot key
itself (a string with a semi-colon separeted list of the attributes,
explained in pdfme.utils.parse_style_str()) or in a style dict
too. The attributes for a paragraph style are the following:

	'b' (bool) to make text inside this part bold. Default is False.

	'i' (bool) to make text inside this part cursive (italics,
oblique). Default is False.

	's' (int, float) to set the size of the text inside this
part. Default is 11.

	'f' (str) to set the font family of the text inside this
part. Default is 'Helvetica'.

	'u' (bool) to make the text inside this part underlined.
Default is False.

	'c' (int, float, list, tuple, str) to set the color of
the text inside this part. See pdfme.color.parse_color()
for information about this attribute. Default is black.

	'bg' (int, float, list, tuple, str) to set the background
color of the text inside this part. See
pdfme.color.parse_color() for information about this
attribute. Default is None.

	'r' (int, float) to set the baseline of the text, relative
to the normal baseline. This is a fraction of the current size of
the text, i.e. it will move the baseline the text size times this
number in points, upwards if positive, and downwards if negative.
Default is 0.

One more example of a content argument with a style dict, and
additional keys:

{
 '.': ['text to be displayed'],
 'style': {
 'b': True,
 'i': True,
 'u': True,
 's': 10.2,
 'f': 'Courier',
 'c': 0.9,
 'bg': 'red',
 'r': 0.5
 },
 'label': 'a_important_paragraph',
 'uri': 'https://github.com/aFelipeSP/pdfme'
}

With arguments list_text, list_indent and list_style you can
turn a paragraph into a list paragraph, one that has a bullet or a number
at the left of the paragraph, with an additional indentation. With this
you can build a bulleted or numbered list of paragraphs.

	Parameters

	
	content (str, list, tuple, dict) – the one just described.

	width (int, float) – The width of the paragraph.

	height (int, float) – The height of the paragraph.

	x (int, float, optional) – The x coordinate of the paragraph.

	y (int, float, optional) – The y coordinate of the paragraph

	fonts (PDFFonts, optional) – To extract information about the fonts
being used in the paragraph.

	text_align (str, optional) – 'l' for left (default), 'c' for
center, 'r' for right and 'j' for justified text.

	line_height (int, float, optional) – How much space between the
lines of the paragraph. This is a fraction of each line’s
height, so the real distance between lines can vary depending on
the text size of each part of the paragraph.

	indent (int, float, optional) – The indentation of the first line of
the paragraph.

	list_text (str, optional) – Needed if you want to turn this paragraph
into a list paragraph. This text will be displayed before the
paragraph and will be aligned with the first line.

	list_indent (int, float, optional) – Needed if you want to turn this
paragraph into a list paragraph. The space between the start of
the left side of the rectangle and the left side of the
paragraph itself. If omitted, this space will be the width of
the list_text.

	list_style (dict, optional) – Needed if you want to turn this
paragraph into a list paragraph. The style of list_text.
If omitted, the style of the first part of the first line will
be used.

	pdf (PDF, optional) – To grab global information of the PDF being
used.

pdfme.utils

	
pdfme.utils.subs(string, *args, **kwargs)

	Function to take string, format it using args and kwargs and
encode it into bytes.

	Parameters

	string (str) – string to be transformed.

	Returns

	the resulting bytes.

	Return type

	bytes

	
pdfme.utils.process_style(style, pdf=None)

	Function to use a named style from the PDF instance passed, if style
is a string or style itself if this is a dict.

	Parameters

	
	style (str, dict) – a style name (str) or a style dict.

	pdf (PDF, optional) – the PDF to extract the named style from.

	Returns

	a style dict.

	Return type

	dict

	
pdfme.utils.get_page_size(size)

	Function to get tuple with the width and height of a page, from the value
in size.

If size is a str, it should be the name of a page size: a5, a4,
a3, b5, b4, jis-b5, jis-b4, letter, legal and
ledger.

If size is a int, the page will be a square of size (int, int).

If size is a list or tuple, it will be converted to a tuple.

	Parameters

	size (int, float, str, iterable) – the page size.

	Returns

	tuple with the page width and height.

	Return type

	tuple

	
pdfme.utils.parse_margin(margin)

	Function to transform margin into a dict containing keys top,
left, bottom and right with the margins.

If margin is a dict, it is returned as it is.

If margin is a string, it will be splitted using commas or spaces, and
each substring will be converted into a number, and after this, the list
obtained will have the same treatment of an iterable.

If margin is an iterable of 1 element, its value will be the margin for
the four sides. If it has 2 elements, the first one will be the top and
bottom margin, and the second one will be the left and right
margin. If it has 3 elements, these will be the top, right and
bottom margins, and the left margin will be the second number (the
same as right). If it has 4 elements, they will be the top,
right, bottom and left margins respectively.

	Parameters

	margin (str, int, float, tuple, list, dict) – the margin element.

	Returns

	dict containing keys top, left, bottom and right
with the margins.

	Return type

	dict

	
pdfme.utils.parse_style_str(style_str, fonts)

	Function to parse a style string into a style dict.

It parses a string with a semi-colon separeted list of the style attributes
you want to apply (for a list of the attributes you can use in this string
see pdfme.text.PDFText). For the ones that are of type bool, you
just have to include the name and it will mean they are True,
and for the rest you need to include the name, a colon, and the value of the
attribute. In case the value is a color, it can be any of the possible
string inputs to function pdfme.color.parse_color().
Empty values mean None, and "1" == True and "0" == False for
bool attributes.

This is an example of a valid style string:

".b;s:10;c:1;u:0;bg:"

	Parameters

	
	style_str (str) – The string representing the text style.

	fonts (PDFFonts) – If a font family is included, this is needed to check
if it is among the fonts already added to the PDFFonts instance
passed.

	Raises

	ValueError – If the string format is not valid.

	Returns

	A style dict like the one described in pdfme.text.PDFText.

	Return type

	dict

	
pdfme.utils.create_graphics(graphics)

	Function to transform a list of graphics dicts (with lines and fill
rectangles) into a PDF stream, ready to be added to a PDF page stream.

	Parameters

	graphics (list) – list of graphics dicts.

	Returns

	a PDF stream containing the passed graphics.

	Return type

	str

	
pdfme.utils.to_roman(n)

	Function to transform n integer into a string with its corresponding
Roman representation.

	Parameters

	n (int) – the number to be transformed.

	Returns

	the Roman representation of the integer passed.

	Return type

	str

	
pdfme.utils.get_paragraph_stream(x, y, text_stream, graphics_stream)

	Function to create a paragraph stream, in position x and y, using
stream information in text_stream and graphics_stream.

	Parameters

	
	x (int, float) – the x coordinate of the paragraph.

	y (int, float) – the y coordinate of the paragraph.

	text_stream (str) – the text stream of the paragraph.

	graphics_stream (str) – the graphics stream of the paragraph.

	Returns

	the whole stream of the paragraph.

	Return type

	str

	
pdfme.utils.copy(obj)

	Function to copy objects like the ones used in this project: dicts,
lists, PDFText, PDFTable, PDFContent, etc.

	Parameters

	obj (Any) – the object to be copied.

	Returns

	the copy of the object passed as argument.

	Return type

	Any

	
class pdfme.utils.MuiltiRange

	Bases: object

	
add(*range_args)

	

	
pdfme.utils.parse_range_string(range_str)

	Function to convert a string of comma-separated integers and integer
ranges into a set of all the integers included in those.

	Parameters

	range_str (str) – comma-separated list of integers and integer
ranges.

	Returns

	a set of integers.

	Return type

	MuiltiRange

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pdfme	

 	
 	
 pdfme.base	

 	
 	
 pdfme.color	

 	
 	
 pdfme.content	

 	
 	
 pdfme.document	

 	
 	
 pdfme.encoders	

 	
 	
 pdfme.fonts	

 	
 	
 pdfme.image	

 	
 	
 pdfme.page	

 	
 	
 pdfme.parser	

 	
 	
 pdfme.pdf	

 	
 	
 pdfme.table	

 	
 	
 pdfme.text	

 	
 	
 pdfme.utils	

Index

 _
 | A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

_

 	
 	_content() (pdfme.pdf.PDF method)

 	
 	_table() (pdfme.pdf.PDF method)

 	_text() (pdfme.pdf.PDF method)

A

 	
 	add() (pdfme.base.PDFBase method)

 	(pdfme.page.PDFPage method)

 	(pdfme.utils.MuiltiRange method)

 	add_accumulated() (pdfme.text.PDFTextLine method)

 	add_annot() (pdfme.page.PDFPage method)

 	add_cell() (pdfme.table.PDFTable method)

 	add_current_line() (pdfme.text.PDFTextBase method)

 	add_delayed() (pdfme.content.PDFContentPart method)

 	add_elements() (pdfme.content.PDFContentPart method)

 	add_font() (pdfme.fonts.PDFFont method)

 	(pdfme.fonts.PDFStandardFont method)

 	(pdfme.fonts.PDFTrueTypeFont method)

 	(pdfme.page.PDFPage method)

 	(pdfme.pdf.PDF method)

 	
 	add_image() (pdfme.page.PDFPage method)

 	(pdfme.pdf.PDF method)

 	add_line_part() (pdfme.text.PDFTextLine method)

 	add_line_to_stream() (pdfme.text.PDFTextBase method)

 	add_link() (pdfme.page.PDFPage method)

 	add_page() (pdfme.pdf.PDF method)

 	add_part() (pdfme.text.PDFTextBase method)

 	add_reference() (pdfme.page.PDFPage method)

 	add_row() (pdfme.table.PDFTable method)

 	add_running_section() (pdfme.pdf.PDF method)

 	add_top_margin() (pdfme.content.PDFContentPart method)

 	add_word() (pdfme.text.PDFTextLine method)

 	(pdfme.text.PDFTextLinePart method)

B

 	
 	base_font (pdfme.fonts.PDFFont property)

 	(pdfme.fonts.PDFStandardFont property)

 	(pdfme.fonts.PDFTrueTypeFont property)

 	
 	bottom (pdfme.text.PDFTextLine property)

 	build_pdf() (in module pdfme.document)

C

 	
 	clean_words() (pdfme.text.PDFTextBase method)

 	compare() (pdfme.text.PDFState method)

 	compare_borders() (pdfme.table.PDFTable method)

 	content() (pdfme.pdf.PDF method)

 	
 	copy() (in module pdfme.utils)

 	create_graphics() (in module pdfme.utils)

 	create_image() (pdfme.pdf.PDF method)

 	current_width() (pdfme.text.PDFTextLinePart method)

E

 	
 	encode_stream() (in module pdfme.encoders)

F

 	
 	flate_encode() (in module pdfme.encoders)

G

 	
 	get_border() (pdfme.table.PDFTable method)

 	get_cell_dimensions() (pdfme.table.PDFTable method)

 	get_cell_style() (pdfme.table.PDFTable method)

 	get_char_width() (pdfme.fonts.PDFFont method)

 	(pdfme.fonts.PDFStandardFont method)

 	(pdfme.fonts.PDFTrueTypeFont method)

 	(pdfme.text.PDFTextLinePart method)

 	get_element_styles() (pdfme.content.PDFContentPart method)

 	get_font() (pdfme.fonts.PDFFonts method)

 	get_min_x() (pdfme.content.PDFContentPart method)

 	get_page_number() (pdfme.pdf.PDF method)

 	get_page_size() (in module pdfme.utils)

 	
 	get_paragraph_stream() (in module pdfme.utils)

 	get_state() (pdfme.content.PDFContent method)

 	(pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

 	(pdfme.text.PDFTextBase method)

 	get_text_width() (pdfme.fonts.PDFFont method)

 	(pdfme.fonts.PDFStandardFont method)

 	(pdfme.fonts.PDFTrueTypeFont method)

 	get_widths() (pdfme.text.PDFTextLine method)

 	get_word_width() (pdfme.text.PDFTextLinePart method)

 	go_to_beginning() (pdfme.content.PDFContentPart method)

 	(pdfme.page.PDFPage method)

H

 	
 	height (pdfme.pdf.PDF property)

 	(pdfme.text.PDFTextLine property)

I

 	
 	image() (pdfme.pdf.PDF method)

 	init() (pdfme.text.PDFTextBase method)

 	
 	is_element_resetting() (pdfme.content.PDFContentPart method)

 	is_span() (pdfme.table.PDFTable method)

 	is_type() (pdfme.table.PDFTable method)

L

 	
 	last_child_of_resetting() (pdfme.content.PDFContentPart method)

 	
 	load_font() (pdfme.fonts.PDFFonts method)

 	(pdfme.fonts.PDFTrueTypeFont method)

M

 	
 	min_width (pdfme.text.PDFTextLine property)

 	
 module

 	pdfme.base

 	pdfme.color

 	pdfme.content

 	pdfme.document

 	pdfme.encoders

 	pdfme.fonts

 	pdfme.image

 	pdfme.page

 	pdfme.parser

 	pdfme.pdf

 	pdfme.table

 	pdfme.text

 	pdfme.utils

 	
 	MuiltiRange (class in pdfme.utils)

N

 	
 	next_section() (pdfme.content.PDFContentPart method)

O

 	
 	output() (pdfme.base.PDFBase method)

 	(pdfme.document.PDFDocument method)

 	(pdfme.pdf.PDF method)

 	
 	output_graphics() (pdfme.text.PDFTextBase method)

 	output_text() (pdfme.text.PDFTextBase method)

P

 	
 	page (pdfme.pdf.PDF property)

 	page_index (pdfme.pdf.PDF property)

 	parse_color() (in module pdfme.color)

 	parse_dict() (in module pdfme.parser)

 	parse_element() (pdfme.content.PDFContentPart method)

 	parse_jpg() (pdfme.image.PDFImage method)

 	parse_list() (in module pdfme.parser)

 	parse_margin() (in module pdfme.utils)

 	parse_obj() (in module pdfme.parser)

 	parse_png() (pdfme.image.PDFImage method)

 	parse_pos_string() (pdfme.table.PDFTable method)

 	parse_range_string() (in module pdfme.utils)

 	(pdfme.table.PDFTable method)

 	parse_stream() (in module pdfme.parser)

 	parse_style_str() (in module pdfme.utils)

 	PDF (class in pdfme.pdf)

 	PDFBase (class in pdfme.base)

 	PDFColor (class in pdfme.color)

 	PDFContent (class in pdfme.content)

 	PDFContentPart (class in pdfme.content)

 	PDFDocument (class in pdfme.document)

 	PDFFont (class in pdfme.fonts)

 	PDFFonts (class in pdfme.fonts)

 	PDFImage (class in pdfme.image)

 	
 pdfme.base

 	module

 	
 pdfme.color

 	module

 	
 pdfme.content

 	module

 	
 pdfme.document

 	module

 	
 pdfme.encoders

 	module

 	
 pdfme.fonts

 	module

 	
 pdfme.image

 	module

 	
 	
 pdfme.page

 	module

 	
 pdfme.parser

 	module

 	
 pdfme.pdf

 	module

 	
 pdfme.table

 	module

 	
 pdfme.text

 	module

 	
 pdfme.utils

 	module

 	PDFObject (class in pdfme.parser)

 	PDFPage (class in pdfme.page)

 	PDFRef (class in pdfme.parser)

 	PDFStandardFont (class in pdfme.fonts)

 	PDFState (class in pdfme.text)

 	PDFTable (class in pdfme.table)

 	PDFText (class in pdfme.text)

 	PDFTextBase (class in pdfme.text)

 	PDFTextLine (class in pdfme.text)

 	PDFTextLinePart (class in pdfme.text)

 	PDFTrueTypeFont (class in pdfme.fonts)

 	pop_word() (pdfme.text.PDFTextLinePart method)

 	process() (pdfme.content.PDFContentPart method)

 	process_add_ans() (pdfme.content.PDFContentPart method)

 	process_borders() (pdfme.table.PDFTable method)

 	process_child() (pdfme.content.PDFContentPart method)

 	process_content() (pdfme.table.PDFTable method)

 	process_group() (pdfme.content.PDFContentPart method)

 	process_group_element() (pdfme.content.PDFContentPart method)

 	process_image() (pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

 	process_style() (in module pdfme.utils)

 	process_table() (pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

 	process_text() (pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

R

 	
 	ref (pdfme.fonts.PDFFont property)

 	(pdfme.parser.PDFRef property)

 	reset() (pdfme.content.PDFContentPart method)

 	result (pdfme.text.PDFTextBase property)

 	
 	run() (pdfme.content.PDFContent method)

 	(pdfme.content.PDFContentPart method)

 	(pdfme.document.PDFDocument method)

 	(pdfme.table.PDFTable method)

 	(pdfme.text.PDFTextBase method)

S

 	
 	set_default_border() (pdfme.table.PDFTable method)

 	set_state() (pdfme.content.PDFContent method)

 	(pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

 	(pdfme.text.PDFTextBase method)

 	setup() (pdfme.content.PDFContent method)

 	(pdfme.content.PDFContentPart method)

 	(pdfme.table.PDFTable method)

 	(pdfme.text.PDFTextBase method)

 	
 	setup_borders() (pdfme.table.PDFTable method)

 	setup_fills() (pdfme.table.PDFTable method)

 	setup_list() (pdfme.text.PDFTextBase method)

 	setup_page() (pdfme.pdf.PDF method)

 	start_resetting() (pdfme.content.PDFContentPart method)

 	stream (pdfme.text.PDFTextBase property)

 	subs() (in module pdfme.utils)

T

 	
 	table() (pdfme.pdf.PDF method)

 	tentative_width() (pdfme.text.PDFTextLinePart method)

 	
 	text() (pdfme.pdf.PDF method)

 	to_roman() (in module pdfme.utils)

U

 	
 	update_dimensions() (pdfme.content.PDFContentPart method)

W

 	
 	width (pdfme.pdf.PDF property)

Y

 	
 	y (pdfme.page.PDFPage property)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pdfme

 		
 Tutorial

 		
 Examples

 		
 Modules

 		
 pdfme.base

 		
 pdfme.color

 		
 pdfme.content

 		
 pdfme.document

 		
 pdfme.encoders

 		
 pdfme.fonts

 		
 pdfme.image

 		
 pdfme.page

 		
 pdfme.parser

 		
 pdfme.pdf

 		
 pdfme.table

 		
 pdfme.text

 		
 pdfme.utils

